Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tespa1 is involved in late thymocyte development through the regulation of TCR-mediated signaling

Abstract

Signaling via the T cell antigen receptor (TCR) during the CD4+CD8+ double-positive developmental stage determines thymocyte selection and lineage commitment. Here we describe a previously uncharacterized T cell–expressed protein, Tespa1, with critical functions during the positive selection of thymocytes. Tespa1−/− mice had fewer mature thymic CD4+ and CD8+ T cells, which reflected impaired thymocyte development. Tespa1 associated with the TCR signaling components PLC-γ1 and Grb2, and Tespa1 deficiency resulted in attenuated TCR signaling, as reflected by defective activation of the Erk–AP-1 and Ca2+-NFAT pathways. Our findings demonstrate that Tespa1 is a component of the TCR signalosome and is essential for T cell selection and maturation through the regulation of TCR signaling during T cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure, expression and subcellular localization of Tespa1.
Figure 2: Defective T cell development in Tespa1−/− mice.
Figure 3: Impaired development of SP thymocytes in Tespa1−/− mice.
Figure 4: Defective positive selection in Tespa1−/− mice.
Figure 5: Phenotype of peripheral T cells in Tespa1−/− mice.
Figure 6: Impaired MHC-restricted thymocyte differentiation in Tespa1−/− mice.
Figure 7: Defective activation of Tespa1-deficient T cells.
Figure 8: Interruption of TCR-driven Erk activation and calcium signaling in Tespa1−/− thymocytes.
Figure 9: Involvement of Tespa1 in the Lat signalosome.

Similar content being viewed by others

References

  1. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Germain, R.N. T-cell development and the CD4–CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bosselut, R. CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nat. Rev. Immunol. 4, 529–540 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Singer, A., Adoro, S. & Park, J.H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat. Rev. Immunol. 8, 788–801 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Werlen, G. & Palmer, E. The T-cell receptor signalosome: a dynamic structure with expanding complexity. Curr. Opin. Immunol. 14, 299–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Brockmeyer, C. et al. T cell receptor (TCR)-induced tyrosine phosphorylation dynamics identifies THEMIS as a new TCR signalosome component. J. Biol. Chem. 286, 7535–7547 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Fischer, A.M., Katayama, C.D., Pages, G., Pouyssegur, J. & Hedrick, S.M. The role of erk1 and erk2 in multiple stages of T cell development. Immunity 23, 431–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Daniels, M.A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kane, L.P. & Hedrick, S.M. A role for calcium influx in setting the threshold for CD4+CD8+ thymocyte negative selection. J. Immunol. 156, 4594–4601 (1996).

    CAS  PubMed  Google Scholar 

  10. Freedman, B.D., Liu, Q.H., Somersan, S., Kotlikoff, M.I. & Punt, J.A. Receptor avidity and costimulation specify the intracellular Ca2+ signaling pattern in CD4+CD8+ thymocytes. J. Exp. Med. 190, 943–952 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lesourne, R. et al. Themis, a T cell-specific protein important for late thymocyte development. Nat. Immunol. 10, 840–847 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu, G. et al. Themis controls thymocyte selection through regulation of T cell antigen receptor–mediated signaling. Nat. Immunol. 10, 848–856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson, A.L. et al. Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nat. Immunol. 10, 831–839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao, Y. et al. LKB1 regulates TCR-mediated PLCγ1 activation and thymocyte positive selection. EMBO J. 30, 2083–2093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boyden, L.M. et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. Nat. Genet. 40, 656–662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Diez-Roux, G. et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 9, e1000582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kurobe, H. et al. CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity 24, 165–177 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, G. & Jenkinson, E.J. Investigating central tolerance with reaggregate thymus organ cultures. Methods Mol. Biol. 380, 185–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Lucas, B. & Germain, R.N. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 5, 461–477 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki, H., Punt, J.A., Granger, L.G. & Singer, A. Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity 2, 413–425 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Cibotti, R., Punt, J.A., Dash, K.S., Sharrow, S.O. & Singer, A. Surface molecules that drive T cell development in vitro in the absence of thymic epithelium and in the absence of lineage-specific signals. Immunity 6, 245–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Penninger, J.M. & Kroemer, G. Molecular and cellular mechanisms of T lymphocyte apoptosis. Adv. Immunol. 68, 51–144 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Calnan, B.J., Szychowski, S., Chan, F.K., Cado, D. & Winoto, A. A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity 3, 273–282 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R.N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Itano, A. et al. The cytoplasmic domain of CD4 promotes the development of CD4 lineage T cells. J. Exp. Med. 183, 731–741 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X. & Bosselut, R. Duration of TCR signaling controls CD4–CD8 lineage differentiation in vivo. Nat. Immunol. 5, 280–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Amaral, M.C., Casillas, A.M. & Nel, A.E. Contrasting effects of two tumour promoters, phorbol myristate acetate and okadaic acid, on T-cell responses and activation of p42 MAP-kinase/ERK-2. Immunology 79, 24–31 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hermiston, M.L. et al. Differential impact of the CD45 juxtamembrane wedge on central and peripheral T cell receptor responses. Proc. Natl. Acad. Sci. USA 106, 546–551 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mayya, V. et al. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci. Signal. 2, ra46 (2009).

    Article  PubMed  Google Scholar 

  32. Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Yachi, P.P., Ampudia, J., Gascoigne, N.R. & Zal, T. Nonstimulatory peptides contribute to antigen-induced CD8–T cell receptor interaction at the immunological synapse. Nat. Immunol. 6, 785–792 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, D. et al. Ras-related protein Rab10 facilitates TLR4 signaling by promoting replenishment of TLR4 onto the plasma membrane. Proc. Natl. Acad. Sci. USA 107, 13806–13811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Li, C. Xu and B. Li for discussions; H. Cantor, Y. Ke and H. Hu for critical reading; and A. Alison for assistance with manuscript editing. Supported by the National Natural Science Foundation of China (30972724 and 31070782 to L.L., and 30901311 and 31170842 to D.W.), the Zhejiang Provincial Natural Science Foundation of China (R2090202 to L.L., and Y2090401 to D.W.) and the National Basic Research Program of China (973 Program; 2011CB944100 and 2012CB945004 to L.L.).

Author information

Authors and Affiliations

Authors

Contributions

D.W., M.Z., L.W., Y.K., J.W., X.C. and L. Lu. designed research; D.W., M.Z., L. Lei., J.J., Y.Y., Y.Q., L.M., J.L., C.O., X.Z., Y.H., J.C. and L. Lu. did research; D.W., M.Z., L.W. and L. Lu. analyzed data; and D.W., M.Z. and L. Lu. wrote the paper.

Corresponding author

Correspondence to Linrong Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 4861 kb)

Supplementary Table 1

Genes differentially expressed in CD69+ Tespa1+/+ and Tespa1-/- thymocytes. (XLSX 291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Zheng, M., Lei, L. et al. Tespa1 is involved in late thymocyte development through the regulation of TCR-mediated signaling. Nat Immunol 13, 560–568 (2012). https://doi.org/10.1038/ni.2301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing