Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic checkpoints in activated T cells

Abstract

The immunological process of clonal selection requires a rapid burst in lymphocyte proliferation, and this involves a metabolic shift to provide energy and the building blocks of new cells. After activation, naive and memory T cells switch from the oxidation of free fatty acids to glycolysis and glutaminolysis to meet these demands. Beyond this, however, the availability of specific metabolites and the pathways that process them interconnect with signaling events in the cell to influence cell cycle, differentiation, cell death and immunological function. Here we define 'metabolic checkpoints' that represent such interconnections and provide examples of how these checkpoints sense metabolic status and transduce signals to affect T lymphocyte responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cell metabolic reprogramming.
Figure 2: Metabolic checkpoints in T cell function.

Similar content being viewed by others

References

  1. Schumacher, T.N., Gerlach, C. & van Heijst, J.W. Mapping the life histories of T cells. Nat. Rev. Immunol. 10, 621–631 (2010).

    CAS  PubMed  Google Scholar 

  2. Green, D.R. Overview: apoptotic signaling pathways in the immune system. Immunol. Rev. 193, 5–9 (2003).

    CAS  PubMed  Google Scholar 

  3. Wang, R. & Green, D.R. The immune diet: meeting the metabolic demands of lymphocyte activation. F1000 Biology Reports 4, 5–9 (2012).

    Google Scholar 

  4. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerriets, V.A. & Rathmell, J.C. Metabolic pathways in T cell fate and function. Trends Immunol. 33, 168–173 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Frauwirth, K.A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  PubMed  Google Scholar 

  7. Michalek, R.D. et al. Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation. Proc. Natl. Acad. Sci. USA 108, 18348–18353 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  9. Fruman, D.A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    CAS  PubMed  Google Scholar 

  10. Macintyre, A.N. et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34, 224–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Shea, J.J. & Paul, W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou, L., Chong, M.M. & Littman, D.R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    CAS  PubMed  Google Scholar 

  13. Harty, J.T. & Badovinac, V.P. Shaping and reshaping CD8+ T-cell memory. Nat. Rev. Immunol. 8, 107–119 (2008).

    CAS  PubMed  Google Scholar 

  14. Shi, L.Z. et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Michalek, R.D. et al. Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  Google Scholar 

  16. van der Windt, G.J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    CAS  PubMed  Google Scholar 

  17. Hartwell, L.H. & Weinert, T.A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634 (1989).

    CAS  PubMed  Google Scholar 

  18. Elledge, S.J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).

    CAS  PubMed  Google Scholar 

  19. Jacob, F., Perrin, D., Sanchez, C. & Monod, J. Operon: a group of genes with the expression coordinated by an operator. C. R. Hebd. Seances Acad. Sci. 250, 1727–1729 (1960).

    CAS  PubMed  Google Scholar 

  20. Marijuán, P.C., Navarro, J. & del Moral, R. On prokaryotic intelligence: strategies for sensing the environment. Biosystems 99, 94–103 (2010).

    PubMed  Google Scholar 

  21. Krell, T. et al. Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu. Rev. Microbiol. 64, 539–559 (2010).

    CAS  PubMed  Google Scholar 

  22. Wellen, K.E. & Thompson, C.B. A two-way street: reciprocal regulation of metabolism and signalling. Nat. Rev. Mol. Cell Biol. 13, 270–276 (2012).

    CAS  PubMed  Google Scholar 

  23. Kaelin, W.G. Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008).

    CAS  PubMed  Google Scholar 

  24. Keith, B., Johnson, R.S. & Simon, M.C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22 (2012).

    CAS  Google Scholar 

  25. Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Epstein, A.C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    CAS  PubMed  Google Scholar 

  27. Hirsilä, M., Koivunen, P., Gunzler, V., Kivirikko, K.I. & Myllyharju, J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem. 278, 30772–30780 (2003).

    PubMed  Google Scholar 

  28. Gerald, D. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781–794 (2004).

    CAS  PubMed  Google Scholar 

  29. Selak, M.A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).

    CAS  PubMed  Google Scholar 

  30. Sitkovsky, M. & Lukashev, D. Regulation of immune cells by local-tissue oxygen tension: HIF1α and adenosine receptors. Nat. Rev. Immunol. 5, 712–721 (2005).

    CAS  PubMed  Google Scholar 

  31. Nizet, V. & Johnson, R.S. Interdependence of hypoxic and innate immune responses. Nat. Rev. Immunol. 9, 609–617 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dang, E.V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kojima, H., Sitkovsky, M.V. & Cascalho, M. HIF-1α deficiency perturbs T and B cell functions. Curr. Pharm. Des. 9, 1827–1832 (2003).

    CAS  PubMed  Google Scholar 

  34. Lukashev, D. et al. Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J. Immunol. 177, 4962–4965 (2006).

    CAS  PubMed  Google Scholar 

  35. Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12, 325–338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Laplante, M. & Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mihaylova, M.M. & Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hardie, D.G., Ross, F.A. & Hawley, S.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Han, J.M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410–424 (2012).

    CAS  PubMed  Google Scholar 

  40. Dennis, P.B. et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105 (2001).

    CAS  PubMed  Google Scholar 

  41. Yu, Y. et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322–1326 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hsu, P.P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317–1322 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Inoki, K., Zhu, T. & Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS  PubMed  Google Scholar 

  44. Gwinn, D.M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tamás, P. et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J. Exp. Med. 203, 1665–1670 (2006).

    PubMed  PubMed Central  Google Scholar 

  46. Mayer, A., Denanglaire, S., Viollet, B., Leo, O. & Andris, F. AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur. J. Immunol. 38, 948–956 (2008).

    CAS  PubMed  Google Scholar 

  47. MacIver, N.J. et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J. Immunol. 187, 4187–4198 (2011).

    CAS  PubMed  Google Scholar 

  48. Powell, J.D., Lerner, C.G. & Schwartz, R.H. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J. Immunol. 162, 2775–2784 (1999).

    CAS  PubMed  Google Scholar 

  49. Zheng, Y. et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J. Immunol. 178, 2163–2170 (2007).

    CAS  PubMed  Google Scholar 

  50. Yang, K., Neale, G., Green, D.R., He, W. & Chi, H. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat. Immunol. 12, 888–897 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Youle, R.J. & Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, J., Kundu, M., Viollet, B. & Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shang, L. et al. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. USA 108, 4788–4793 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Egan, D.F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    CAS  PubMed  Google Scholar 

  55. Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150, 1507–1513 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kamada, Y. et al. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol. Cell. Biol. 30, 1049–1058 (2010).

    CAS  PubMed  Google Scholar 

  57. Li, C. et al. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J. Immunol. 177, 5163–5168 (2006).

    CAS  PubMed  Google Scholar 

  58. Pua, H.H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y.W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204, 25–31 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pua, H.H., Guo, J., Komatsu, M. & He, Y.W. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 182, 4046–4055 (2009).

    CAS  PubMed  Google Scholar 

  60. Jia, W., Pua, H.H., Li, Q.J. & He, Y.W. Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J. Immunol. 186, 1564–1574 (2011).

    CAS  PubMed  Google Scholar 

  61. Procaccini, C. et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33, 929–941 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Delgoffe, G.M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Delgoffe, G.M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, K. et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743–753 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pearce, E.L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Harding, H.P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    CAS  PubMed  Google Scholar 

  67. Wek, R.C., Jiang, H.Y. & Anthony, T.G. Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7–11 (2006).

    CAS  PubMed  Google Scholar 

  68. Huang, L., Baban, B., Johnson, B.A. III & Mellor, A.L. Dendritic cells, indoleamine 2,3 dioxygenase and acquired immune privilege. Int. Rev. Immunol. 29, 133–155 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bunpo, P. et al. The eIF2 kinase GCN2 is essential for the murine immune system to adapt to amino acid deprivation by asparaginase. J. Nutr. 140, 2020–2027 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nicholson, L.B., Raveney, B.J. & Munder, M. Monocyte dependent regulation of autoimmune inflammation. Curr. Mol. Med. 9, 23–29 (2009).

    CAS  PubMed  Google Scholar 

  71. Sundrud, M.S. et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324, 1334–1338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Munn, D.H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642 (2005).

    CAS  PubMed  Google Scholar 

  73. Iyer, S.S. et al. Protein energy malnutrition impairs homeostatic proliferation of memory CD8 T cells. J. Immunol. 188, 77–84 (2012).

    CAS  PubMed  Google Scholar 

  74. Quintana, F.J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    CAS  PubMed  Google Scholar 

  75. Veldhoen, M., Hirota, K., Christensen, J., O'Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med. 206, 43–49 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    CAS  PubMed  Google Scholar 

  77. Mezrich, J.D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).

    CAS  PubMed  Google Scholar 

  78. Opitz, C.A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011).

    CAS  PubMed  Google Scholar 

  79. Bensinger, S.J. & Tontonoz, P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454, 470–477 (2008).

    CAS  PubMed  Google Scholar 

  80. Repa, J.J. & Mangelsdorf, D.J. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu. Rev. Cell Dev. Biol. 16, 459–481 (2000).

    CAS  PubMed  Google Scholar 

  81. Janowski, B.A., Willy, P.J., Devi, T.R., Falck, J.R. & Mangelsdorf, D.J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383, 728–731 (1996).

    CAS  PubMed  Google Scholar 

  82. Forman, B.M., Ruan, B., Chen, J., Schroepfer, G.J. Jr. & Evans, R.M. The orphan nuclear receptor LXRα is positively and negatively regulated by distinct products of mevalonate metabolism. Proc. Natl. Acad. Sci. USA 94, 10588–10593 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mitro, N. et al. The nuclear receptor LXR is a glucose sensor. Nature 445, 219–223 (2007).

    CAS  PubMed  Google Scholar 

  84. Denechaud, P.D. et al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J. Clin. Invest. 118, 956–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bensinger, S.J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cui, G. et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J. Clin. Invest. 121, 658–670 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schults, M.A. et al. Diminished carcinogen detoxification is a novel mechanism for hypoxia-inducible factor 1-mediated genetic instability. J. Biol. Chem. 285, 14558–14564 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lim, J.H. et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell 38, 864–878 (2010).

    CAS  PubMed  Google Scholar 

  89. Li, X. et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28, 91–106 (2007).

    PubMed  Google Scholar 

  90. Cantó, C. & Auwerx, J. NAD+ as a signaling molecule modulating metabolism. Cold Spring Harb. Symp. Quant. Biol. 76, 291–298 (2011).

    PubMed  Google Scholar 

  91. Imai, S. & Guarente, L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol. Sci. 31, 212–220 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang, X.J. & Seto, E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell 31, 449–461 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Guan, K.L. & Xiong, Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem. Sci. 36, 108–116 (2011).

    CAS  PubMed  Google Scholar 

  94. Cai, L. & Tu, B.P. On acetyl-CoA as a gauge of cellular metabolic state. Cold Spring Harb. Symp. Quant. Biol. 76, 195–202 (2011).

    CAS  PubMed  Google Scholar 

  95. Lin, S.J. & Guarente, L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr. Opin. Cell Biol. 15, 241–246 (2003).

    CAS  PubMed  Google Scholar 

  96. Smith, B.C., Hallows, W.C. & Denu, J.M. A continuous microplate assay for sirtuins and nicotinamide-producing enzymes. Anal. Biochem. 394, 101–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Imai, S., Armstrong, C.M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    CAS  PubMed  Google Scholar 

  98. Rongvaux, A., Andris, F., Van Gool, F. & Leo, O. Reconstructing eukaryotic NAD metabolism. BioEssays 25, 683–690 (2003).

    CAS  PubMed  Google Scholar 

  99. Rongvaux, A. et al. Nicotinamide phosphoribosyl transferase/pre-B cell colony-enhancing factor/visfatin is required for lymphocyte development and cellular resistance to genotoxic stress. J. Immunol. 181, 4685–4695 (2008).

    CAS  PubMed  Google Scholar 

  100. Houtkooper, R.H., Canto, C., Wanders, R.J. & Auwerx, J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194–223 (2010).

    CAS  PubMed  Google Scholar 

  101. Goodwin, P.M., Lewis, P.J., Davies, M.I., Skidmore, C.J. & Shall, S. The effect of gamma radiation and neocarzinostatin on NAD and ATP levels in mouse leukaemia cells. Biochim. Biophys. Acta 543, 576–582 (1978).

    CAS  PubMed  Google Scholar 

  102. Krishnakumar, R. & Kraus, W.L. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol. Cell 39, 8–24 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Schreiber, V., Dantzer, F., Ame, J.C. & de Murcia, G. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517–528 (2006).

    CAS  PubMed  Google Scholar 

  104. Skidmore, C.J. et al. The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by γ-radiation and N-methyl-N-nitrosourea. Eur. J. Biochem 101, 135–142 (1979).

    CAS  PubMed  Google Scholar 

  105. Mendoza-Alvarez, H. & Alvarez-Gonzalez, R. Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J. Biol. Chem. 268, 22575–22580 (1993).

    CAS  PubMed  Google Scholar 

  106. Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Berger, S.J., Manory, I., Sudar, D.C., Krothapalli, D. & Berger, N.A. Pyridine nucleotide analog interference with metabolic processes in mitogen-stimulated human T lymphocytes. Exp. Cell Res. 173, 379–387 (1987).

    CAS  PubMed  Google Scholar 

  108. Valdor, R. et al. Regulation of NFAT by poly(ADP-ribose) polymerase activity in T cells. Mol. Immunol. 45, 1863–1871 (2008).

    CAS  PubMed  Google Scholar 

  109. Olabisi, O.A. et al. Regulation of transcription factor NFAT by ADP-ribosylation. Mol. Cell. Biol. 28, 2860–2871 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Fields, P.E., Kim, S.T. & Flavell, R.A. Cutting edge: changes in histone acetylation at the IL-4 and IFN-γ loci accompany Th1/Th2 differentiation. J. Immunol. 169, 647–650 (2002).

    CAS  PubMed  Google Scholar 

  111. Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat. Immunol. 3, 643–651 (2002).

    CAS  PubMed  Google Scholar 

  112. Li, B. et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl. Acad. Sci. USA 104, 4571–4576 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. van Loosdregt, J. et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115, 965–974 (2010).

    CAS  PubMed  Google Scholar 

  114. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

    CAS  PubMed  Google Scholar 

  115. Beier, U.H. et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol. Cell. Biol. 31, 1022–1029 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38 (2007).

    PubMed  PubMed Central  Google Scholar 

  117. Nasta, F., Laudisi, F., Sambucci, M., Rosado, M.M. & Pioli, C. Increased Foxp3+ regulatory T cells in poly(ADP-Ribose) polymerase-1 deficiency. J. Immunol. 184, 3470–3477 (2010).

    CAS  PubMed  Google Scholar 

  118. Oumouna, M. et al. Poly(ADP-ribose) polymerase-1 inhibition prevents eosinophil recruitment by modulating Th2 cytokines in a murine model of allergic airway inflammation: a potential specific effect on IL-5. J. Immunol. 177, 6489–6496 (2006).

    PubMed  Google Scholar 

  119. Chiarugi, A. Inhibitors of poly(ADP-ribose) polymerase-1 suppress transcriptional activation in lymphocytes and ameliorate autoimmune encephalomyelitis in rats. Br. J. Pharmacol. 137, 761–770 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Farez, M.F. et al. Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat. Immunol. 10, 958–964 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, J. et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J. Clin. Invest. 119, 3048–3058 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sequeira, J. et al. sirt1-null mice develop an autoimmune-like condition. Exp. Cell Res. 314, 3069–3074 (2008).

    CAS  PubMed  Google Scholar 

  123. Gao, B., Kong, Q., Kemp, K., Zhao, Y.S. & Fang, D. Analysis of sirtuin 1 expression reveals a molecular explanation of IL-2-mediated reversal of T-cell tolerance. Proc. Natl. Acad. Sci. USA 109, 899–904 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bordone, L. & Guarente, L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 6, 298–305 (2005).

    CAS  PubMed  Google Scholar 

  125. Sun, D. et al. Regulation of immune function by calorie restriction and cyclophosphamide treatment in lupus-prone NZB/NZW F1 mice. Cell. Immunol. 228, 54–65 (2004).

    CAS  PubMed  Google Scholar 

  126. Piccio, L., Stark, J.L. & Cross, A.H. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J. Leukoc. Biol. 84, 940–948 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Petro, T.M. Regulatory role of resveratrol on Th17 in autoimmune disease. Int. Immunopharmacol. 11, 310–318 (2011).

    CAS  PubMed  Google Scholar 

  128. Pae, M., Meydani, S.N. & Wu, D. The role of nutrition in enhancing immunity in aging. Aging Dis. 3, 91–129 (2012).

    PubMed  Google Scholar 

  129. Liu, Y., Yu, Y., Matarese, G. & La Cava, A. Cutting edge: fasting-induced hypoleptinemia expands functional regulatory T cells in systemic lupus erythematosus. J. Immunol. 188, 2070–2073 (2012).

    CAS  PubMed  Google Scholar 

  130. Ahmed, T. et al. Calorie restriction enhances T-cell-mediated immune response in adult overweight men and women. J. Gerontol. A Biol. Sci. Med. Sci. 64, 1107–1113 (2009).

    PubMed  Google Scholar 

  131. Edelman, A.M., Blumenthal, D.K. & Krebs, E.G. Protein serine/threonine kinases. Annu. Rev. Biochem. 56, 567–613 (1987).

    CAS  PubMed  Google Scholar 

  132. Gribble, F.M. et al. A novel method for measurement of submembrane ATP concentration. J. Biol. Chem. 275, 30046–30049 (2000).

    CAS  PubMed  Google Scholar 

  133. Moses, V. & Lonberg-Holm, K.K. The study of metabolic compartmentalization. J. Theor. Biol. 10, 336–351 (1966).

    CAS  PubMed  Google Scholar 

  134. Fang, M. et al. The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell 143, 711–724 (2010).

    CAS  PubMed  Google Scholar 

  135. Wellen, K.E. et al. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev. 24, 2784–2799 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mazurek, S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol. 43, 969–980 (2011).

    CAS  PubMed  Google Scholar 

  137. Shaw, R.J. & Cantley, L.C. Decoding key nodes in the metabolism of cancer cells: sugar & spice and all things nice. F1000 Biol. Rep. 4, 2 (2012).

    PubMed  PubMed Central  Google Scholar 

  138. Ignacak, J. & Stachurska, M.B. The dual activity of pyruvate kinase type M2 from chromatin extracts of neoplastic cells. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 134, 425–433 (2003).

    PubMed  Google Scholar 

  139. Gao, X., Wang, H., Yang, J.J., Liu, X. & Liu, Z.R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598–609 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Semenova, G. & Chernoff, J. PKM2 enters the morpheein academy. Mol. Cell 45, 583–584 (2012).

    CAS  PubMed  Google Scholar 

  141. Mazurek, S., Grimm, H., Boschek, C.B., Vaupel, P. & Eigenbrodt, E. Pyruvate kinase type M2: a crossroad in the tumor metabolome. Br. J. Nutr. 87 (suppl. 1), S23–S29 (2002).

    CAS  PubMed  Google Scholar 

  142. Christofk, H.R., Vander Heiden, M.G., Wu, N., Asara, J.M. & Cantley, L.C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008).

    CAS  PubMed  Google Scholar 

  143. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Grüning, N.M. et al. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab. 14, 415–427 (2011).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Chi and L. Shi for discussions. Supported by St. Jude Children's Research Hospital (George J. Mitchell fellowship to R.W.), the US National Institutes of Health (AI40646 and GM52735 to D.R.G.) and the American Lebanese and Syrian Associated Charities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruoning Wang or Douglas R Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Green, D. Metabolic checkpoints in activated T cells. Nat Immunol 13, 907–915 (2012). https://doi.org/10.1038/ni.2386

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing