Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma

Abstract

MEF2B encodes a transcriptional activator and is mutated in 11% of diffuse large B cell lymphomas (DLBCLs) and 12% of follicular lymphomas (FLs). Here we found that MEF2B directly activated the transcription of the proto-oncogene BCL6 in normal germinal-center (GC) B cells and was required for DLBCL proliferation. Mutation of MEF2B resulted in enhanced transcriptional activity of MEF2B either through disruption of its interaction with the corepressor CABIN1 or by rendering it insensitive to inhibitory signaling events mediated by phosphorylation and sumoylation. Consequently, the transcriptional activity of Bcl-6 was deregulated in DLBCLs with MEF2B mutations. Thus, somatic mutations of MEF2B may contribute to lymphomagenesis by deregulating BCL6 expression, and MEF2B may represent an alternative target for blocking Bcl-6 activity in DLBCLs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MEF2B is targeted predominantly by missense mutations in DLBCL and FL.
Figure 2: MEF2B is expressed in GC B cells.
Figure 3: BCL6 is a direct transcriptional target of MEF2B in GC B cells.
Figure 4: MEF2B is required for cell-cycle progression and proliferation in DLBCL.
Figure 5: N-terminal substitutions of MEF2B enhance BCL6 transcription and correlate with increased biological activity of Bcl-6 in cases of primary DLBCL.
Figure 6: MEF2B proteins with N-terminal substitutions fail to bind CABIN1 and escape its corepressor activity.
Figure 7: MEF2B proteins with truncation at the C terminus escape negative regulation by PKA-dependent phosphorylation.
Figure 8: C-terminal substitutions of MEF2B abrogate negative regulation of MEF2B by phosphorylation-dependent sumoylation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Swerdlow, S.H. et al. in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (eds. Swerdlow, S.H. et al.) 233–237 (International Agency for Research on Cancer, Lyon, 2008).

  2. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Lenz, G. & Staudt, L.M. Aggressive lymphomas. N. Engl. J. Med. 362, 1417–1429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morin, R.D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lohr, J.G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl. Acad. Sci. USA 109, 3879–3884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, J. et al. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc. Natl. Acad. Sci. USA 110, 1398–1403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Challa-Malladi, M. et al. Combined genetic inactivation of β2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20, 728–740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iqbal, J. et al. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma. Leukemia 21, 2332–2343 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pasqualucci, L. The genetic basis of diffuse large B-cell lymphoma. Curr. Opin. Hematol. 20, 336–344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morin, R.D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pasqualucci, L. et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J. Exp. Med. 203, 311–317 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tam, W. et al. Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 107, 4090–4100 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Pasqualucci, L. et al. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 101, 2914–2923 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Potthoff, M.J. & Olson, E.N. MEF2: a central regulator of diverse developmental programs. Development 134, 4131–4140 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Molkentin, J.D. et al. MEF2B is a potent transactivator expressed in early myogenic lineages. Mol. Cell Biol. 16, 3814–3824 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gossett, L.A., Kelvin, D.J., Sternberg, E.A. & Olson, E.N. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell Biol. 9, 5022–5033 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Han, A. et al. Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2. Nature 422, 730–734 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Youn, H.D., Sun, L., Prywes, R. & Liu, J.O. Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science 286, 790–793 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Youn, H.D. & Liu, J.O. Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity 13, 85–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Khiem, D., Cyster, J.G., Schwarz, J.J. & Black, B.L. A p38 MAPK-MEF2C pathway regulates B-cell proliferation. Proc. Natl. Acad. Sci. USA 105, 17067–17072 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilker, P.R. et al. Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nat. Immunol. 9, 603–612 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl. Acad. Sci. USA 100, 2639–2644 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Basso, K. & Dalla-Favera, R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol. Rev. 247, 172–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Cattoretti, G. et al. BCL-6 protein is expressed in germinal-center B cells. Blood 86, 45–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol. Syst. Biol. 6, 377 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Basso, K. et al. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood 115, 975–984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meerbrey, K.L. et al. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc. Natl. Acad. Sci. USA 108, 3665–3670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du, M. et al. Protein kinase A represses skeletal myogenesis by targeting myocyte enhancer factor 2D. Mol. Cell Biol. 28, 2952–2970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skalhegg, B.S. & Tasken, K. Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front. Biosci. 5, D678–693 (2000).

    CAS  PubMed  Google Scholar 

  36. Seamon, K. & Daly, J.W. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J. Biol. Chem. 256, 9799–9801 (1981).

    Article  CAS  PubMed  Google Scholar 

  37. Chijiwa, T. et al. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J. Biol. Chem. 265, 5267–5272 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Iyer, G.H., Moore, M.J. & Taylor, S.S. Consequences of lysine 72 mutation on the phosphorylation and activation state of cAMP-dependent kinase. J. Biol. Chem. 280, 8800–8807 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl. Acad. Sci. USA 103, 45–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Mohideen, F. et al. A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Nat. Struct. Mol. Biol. 16, 945–952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gregoire, S. et al. Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. J. Biol. Chem. 281, 4423–4433 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Kang, J., Gocke, C.B. & Yu, H. Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity. BMC Biochem. 7, 5 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Molkentin, J.D., Black, B.L., Martin, J.F. & Olson, E.N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125–1136 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Pasqualucci, L., Kitaura, Y., Gu, H. & Dalla-Favera, R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc. Natl. Acad. Sci. USA 103, 395–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Basu, U. et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 438, 508–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Baron, B.W. et al. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc. Natl. Acad. Sci. USA 90, 5262–5266 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ye, B.H., Rao, P.H., Chaganti, R.S. & Dalla-Favera, R. Cloning of bcl-6, the locus involved in chromosome translocations affecting band 3q27 in B-cell lymphoma. Cancer Res. 53, 2732–2735 (1993).

    CAS  PubMed  Google Scholar 

  48. Cattoretti, G. et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Ye, B.H. et al. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. EMBO J. 14, 6209–6217 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duan, S. et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 481, 90–93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cerchietti, L.C. et al. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell 17, 400–411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bieber, T. & Elsasser, H.P. Preparation of a low molecular weight polyethylenimine for efficient cell transfection. Biotechniques 30, 74–77, 80–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Fellmann, C. et al. Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol. Cell 41, 733–746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scuoppo, C. et al. A tumour suppressor network relying on the polyamine-hypusine axis. Nature 487, 244–248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Dominguez-Sola, D. et al. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat. Immunol. 13, 1083–1091 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Margolin, A.A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7, S7 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Grunn, M. Fangazio and M. Vasishtha for help with the sequencing analysis; C. Scuoppo for advice on and reagents for the inducible lentiviral vector system; A. Holmes for statistical analysis (analysis of variance); A. Zelent (The Institute of Cancer Research, London) for antibody to HDAC9; E. Yeh (MD Anderson) for depositing the plasmid encoding Ubc9 at Addgene; R.T. Hay (University of Dundee) for the expression plasmid encoding hemagglutinin-tagged SUMO1; and the Flow Cytometry facility of the Herbert Irving Comprehensive Cancer Center. Supported by the US National Institutes of Health (PO1-CA092625 and RO1-CA37295 to R.D.-F.), the Leukemia and Lymphoma Society (to R.D.-F.), the National Cancer Institute of the US National Institutes of Health (5K99 CA151827 to D.D.-S.) and the Stewart Trust (K.B.). L.P. is on leave from the University of Perugia Medical School, Perugia, Italy.

Author information

Authors and Affiliations

Authors

Contributions

C.Y.Y. and R.D.-F. designed the study and wrote the manuscript; C.Y.Y. did experiments and analyzed data; D.D.-S. did and contributed to the design and execution of the experiments and data analysis; M.F. did coimmunoprecipitation assays; I.C.L. did structural analysis; S.H. contributed to the immunofluorescence staining; M.B. did bioinformatics analysis, supervised by A.C.; L.P. did and supervised genomic analysis; K.B. contributed to the original design of the study; D.D.-S., K.B., L.P. and I.C.L. edited the manuscript; and all authors read and approved of the manuscript.

Corresponding author

Correspondence to Riccardo Dalla-Favera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–3 (PDF 2197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ying, C., Dominguez-Sola, D., Fabi, M. et al. MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma. Nat Immunol 14, 1084–1092 (2013). https://doi.org/10.1038/ni.2688

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2688

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer