Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of adaptive immunity by the innate immune system

Subjects

Abstract

Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recognition of structural and functional features.
Figure 2: The instruction of various classes of T cell responses by DCs.
Figure 3: The order of effector function engagement, from lowest cost to highest cost.
Figure 4: The two-tiered design of the immune responses.
Figure 5: Single-tiered immune responses.

Similar content being viewed by others

References

  1. Janeway, C.A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Wu, J. & Chen, Z.J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32, 461–488 (2014).

    CAS  PubMed  Google Scholar 

  4. Rathinam, V.A., Vanaja, S.K. & Fitzgerald, K.A. Regulation of inflammasome signaling. Nat. Immunol. 13, 333–342 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palm, N.W., Rosenstein, R.K. & Medzhitov, R. Allergic host defences. Nature 484, 465–472 (2012).

    CAS  PubMed  Google Scholar 

  6. Belkaid, Y. & Naik, S. Compartmentalized and systemic control of tissue immunity by commensals. Nat. Immunol. 14, 646–653 (2013).

    CAS  PubMed  Google Scholar 

  7. Brestoff, J.R. & Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14, 676–684 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chow, J., Lee, S.M., Shen, Y., Khosravi, A. & Mazmanian, S.K. Host-bacterial symbiosis in health and disease. Adv. Immunol. 107, 243–274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Barton, G.M. & Kagan, J.C. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9, 535–542 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoneyama, M., Onomoto, K., Jogi, M., Akaboshi, T. & Fujita, T. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 32C, 48–53 (2015).

    Google Scholar 

  11. Gürtler, C. & Bowie, A.G. Innate immune detection of microbial nucleic acids. Trends Microbiol. 21, 413–420 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Rathinam, V.A. & Fitzgerald, K.A. Cytosolic surveillance and antiviral immunity. Curr. Opin. Virol. 1, 455–462 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Burdette, D.L. & Vance, R.E. STING and the innate immune response to nucleic acids in the cytosol. Nat. Immunol. 14, 19–26 (2013).

    CAS  PubMed  Google Scholar 

  14. von Moltke, J., Ayres, J.S., Kofoed, E.M., Chavarria-Smith, J. & Vance, R.E. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31, 73–106 (2013).

    CAS  PubMed  Google Scholar 

  15. Lamkanfi, M. & Dixit, V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol. 28, 137–161 (2012).

    CAS  PubMed  Google Scholar 

  16. Blander, J.M. & Sander, L.E. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat. Rev. Immunol. 12, 215–225 (2012).

    CAS  PubMed  Google Scholar 

  17. Vance, R.E., Isberg, R.R. & Portnoy, D.A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6, 10–21 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stuart, L.M., Paquette, N. & Boyer, L. Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat. Rev. Immunol. 13, 199–206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sander, L.E. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474, 385–389 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281–288 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    CAS  PubMed  Google Scholar 

  22. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    CAS  PubMed  Google Scholar 

  23. Ichinohe, T., Pang, I.K. & Iwasaki, A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 11, 404–410 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dangl, J.L. & Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001).

    CAS  PubMed  Google Scholar 

  25. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    CAS  PubMed  Google Scholar 

  26. Gause, W.C., Wynn, T.A. & Allen, J.E. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nat. Rev. Immunol. 13, 607–614 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Allen, J.E. & Wynn, T.A. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 7, e1002003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Monticelli, L.A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wynn, T.A., Chawla, A. & Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Heredia, J.E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kärre, K., Ljunggren, H.G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    PubMed  Google Scholar 

  33. Raulet, D.H. Missing self recognition and self tolerance of natural killer (NK) cells. Semin. Immunol. 18, 145–150 (2006).

    CAS  PubMed  Google Scholar 

  34. Karlhofer, F.M., Ribaudo, R.K. & Yokoyama, W.M. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358, 66–70 (1992).

    CAS  PubMed  Google Scholar 

  35. Doody, G.M. et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269, 242–244 (1995).

    CAS  PubMed  Google Scholar 

  36. Kemper, C., Atkinson, J.P. & Hourcade, D.E. Properdin: emerging roles of a pattern-recognition molecule. Annu. Rev. Immunol. 28, 131–155 (2010).

    CAS  PubMed  Google Scholar 

  37. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    CAS  PubMed  Google Scholar 

  38. Abreu, M.T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 10, 131–144 (2010).

    CAS  PubMed  Google Scholar 

  39. Saenz, S.A., Taylor, B.C. & Artis, D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol. Rev. 226, 172–190 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Uematsu, S. et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7, 868–874 (2006).

    CAS  PubMed  Google Scholar 

  41. Lightfield, K.L. et al. Differential requirements for NAIP5 in activation of the NLRC4 inflammasome. Infect. Immun. 79, 1606–1614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    CAS  PubMed  Google Scholar 

  43. Casson, C.N. et al. Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLoS Pathog. 9, e1003400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thomas, C.J. & Schroder, K. Pattern recognition receptor function in neutrophils. Trends Immunol. 34, 317–328 (2013).

    CAS  PubMed  Google Scholar 

  45. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Google Scholar 

  46. Pecchi, E., Dallaporta, M., Jean, A., Thirion, S. & Troadec, J.D. Prostaglandins and sickness behavior: old story, new insights. Physiol. Behav. 97, 279–292 (2009).

    CAS  PubMed  Google Scholar 

  47. Gabay, C. & Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454 (1999).

    CAS  PubMed  Google Scholar 

  48. Hermesh, T., Moltedo, B., Moran, T.M. & Lopez, C.B. Antiviral instruction of bone marrow leukocytes during respiratory viral infections. Cell Host Microbe 7, 343–353 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Asselin-Paturel, C. et al. Mouse type I IFN–producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2, 1144–1150 (2001).

    CAS  PubMed  Google Scholar 

  50. Asselin-Paturel, C. et al. Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J. Exp. Med. 201, 1157–1167 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Barchet, W. et al. Virus-induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling in vivo. J. Exp. Med. 195, 507–516 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Anthony, R.M., Rutitzky, L.I., Urban, J.F. Jr. Stadecker, M.J. & Gause, W.C. Protective immune mechanisms in helminth infection. Nat. Rev. Immunol. 7, 975–987 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Brown, S.J. & Askenase, P.W. Cutaneous basophil responses and immune resistance of guinea pigs to ticks: passive transfer with peritoneal exudate cells or serum. J. Immunol. 127, 2163–2167 (1981).

    CAS  PubMed  Google Scholar 

  54. Wada, T. et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J. Clin. Invest. 120, 2867–2875 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013).

    CAS  PubMed  Google Scholar 

  56. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    CAS  PubMed  Google Scholar 

  57. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Satpathy, A.T., Wu, X., Albring, J.C. & Murphy, K.M. Re(de)fining the dendritic cell lineage. Nat. Immunol. 13, 1145–1154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Briseño, C.G., Murphy, T.L. & Murphy, K.M. Complementary diversification of dendritic cells and innate lymphoid cells. Curr. Opin. Immunol. 29, 69–78 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Persson, E.K. et al. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38, 958–969 (2013).

    CAS  PubMed  Google Scholar 

  62. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Edelson, B.T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. del Rio, M.L., Rodriguez-Barbosa, J.I., Kremmer, E. & Forster, R. CD103 and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J. Immunol. 178, 6861–6866 (2007).

    CAS  PubMed  Google Scholar 

  65. Desch, A.N. et al. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208, 1789–1797 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Desch, A.N. et al. Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nat. Commun. 5, 4674 (2014).

    CAS  PubMed  Google Scholar 

  67. Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zelenay, S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest. 122, 1615–1627 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Igyártó, B.Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260–272 (2011).

    PubMed  Google Scholar 

  70. Haniffa, M. et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60–73 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Klechevsky, E. et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29, 497–510 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Segura, E. et al. Characterization of resident and migratory dendritic cells in human lymph nodes. J. Exp. Med. 209, 653–660 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mashayekhi, M. et al. CD8alpha+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35, 249–259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Edelson, B.T. et al. CD8alpha+ dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 35, 236–248 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Edelson, B.T. et al. Batf3-dependent CD11blow/− peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS ONE 6, e25660 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. King, I.L., Kroenke, M.A. & Segal, B.M. GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J. Exp. Med. 207, 953–961 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hernández-Santos, N. & Gaffen, S.L. Th17 cells in immunity to Candida albicans. Cell Host Microbe 11, 425–435 (2012).

    PubMed  PubMed Central  Google Scholar 

  78. Romani, L. Cell mediated immunity to fungi: a reassessment. Med. Mycol. 46, 515–529 (2008).

    CAS  PubMed  Google Scholar 

  79. Brown, G.D. & Netea, M.G. Exciting developments in the immunology of fungal infections. Cell Host Microbe 11, 422–424 (2012).

    CAS  PubMed  Google Scholar 

  80. Reid, D.M., Gow, N.A. & Brown, G.D. Pattern recognition: recent insights from Dectin-1. Curr. Opin. Immunol. 21, 30–37 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Robinson, M.J. et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 206, 2037–2051 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Torchinsky, M.B., Garaude, J., Martin, A.P. & Blander, J.M. Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature 458, 78–82 (2009).

    CAS  PubMed  Google Scholar 

  83. Welty, N.E. et al. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J. Exp. Med. 210, 2011–2024 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lewis, K.L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780–791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dennehy, K.M., Willment, J.A., Williams, D.L. & Brown, G.D. Reciprocal regulation of IL-23 and IL-12 following co-activation of Dectin-1 and TLR signaling pathways. Eur. J. Immunol. 39, 1379–1386 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kumamoto, Y. et al. CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39, 733–743 (2013).

    CAS  PubMed  Google Scholar 

  87. Gao, Y. et al. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 39, 722–732 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Murakami, R. et al. A unique dermal dendritic cell subset that skews the immune response toward Th2. PLoS ONE 8, e73270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tang, H. et al. The T helper type 2 response to cysteine proteases requires dendritic cell–basophil cooperation via ROS-mediated signaling. Nat. Immunol. 11, 608–617 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Haas, K.M., Poe, J.C., Steeber, D.A. & Tedder, T.F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23, 7–18 (2005).

    CAS  PubMed  Google Scholar 

  91. Alugupalli, K.R. et al. B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21, 379–390 (2004).

    CAS  PubMed  Google Scholar 

  92. Baumgarth, N. et al. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 192, 271–280 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gururajan, M., Jacob, J. & Pulendran, B. Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS ONE 2, e863 (2007).

    PubMed  PubMed Central  Google Scholar 

  94. Pone, E.J. et al. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-kappaB pathway. Nat. Commun. 3, 767 (2012).

    PubMed  Google Scholar 

  95. Dempsey, P.W., Allison, M.E., Akkaraju, S., Goodnow, C.C. & Fearon, D.T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    CAS  PubMed  Google Scholar 

  96. Doody, G.M., Dempsey, P.W. & Fearon, D.T. Activation of B lymphocytes: integrating signals from CD19, CD22 and Fc gamma RIIb1. Curr. Opin. Immunol. 8, 378–382 (1996).

    CAS  PubMed  Google Scholar 

  97. Varki, A. & Gagneux, P. Multifarious roles of sialic acids in immunity. Ann. NY Acad. Sci. 1253, 16–36 (2012).

    CAS  PubMed  Google Scholar 

  98. Hou, B. et al. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 34, 375–384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Browne, E.P. Toll-like receptor 7 controls the anti-retroviral germinal center response. PLoS Pathog. 7, e1002293 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Barr, T.A., Brown, S., Mastroeni, P. & Gray, D. B cell intrinsic MyD88 signals drive IFN-gamma production from T cells and control switching to IgG2c. J. Immunol. 183, 1005–1012 (2009).

    CAS  PubMed  Google Scholar 

  101. Guay, H.M., Andreyeva, T.A., Garcea, R.L., Welsh, R.M. & Szomolanyi-Tsuda, E. MyD88 is required for the formation of long-term humoral immunity to virus infection. J. Immunol. 178, 5124–5131 (2007).

    CAS  PubMed  Google Scholar 

  102. Heer, A.K. et al. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J. Immunol. 178, 2182–2191 (2007).

    CAS  PubMed  Google Scholar 

  103. Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    CAS  PubMed  Google Scholar 

  104. Teichmann, L.L., Schenten, D., Medzhitov, R., Kashgarian, M. & Shlomchik, M.J. Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus. Immunity 38, 528–540 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pasare, C. & Medzhitov, R. Control of B-cell responses by Toll-like receptors. Nature 438, 364–368 (2005).

    CAS  PubMed  Google Scholar 

  106. Bessa, J. et al. Alveolar macrophages and lung dendritic cells sense RNA and drive mucosal IgA responses. J. Immunol. 183, 3788–3799 (2009).

    CAS  PubMed  Google Scholar 

  107. Nish, S. & Medzhitov, R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 34, 629–636 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Diefenbach, A., Colonna, M. & Koyasu, S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354–365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. McKenzie, A.N., Spits, H. & Eberl, G. Innate lymphoid cells in inflammation and immunity. Immunity 41, 366–374 (2014).

    CAS  PubMed  Google Scholar 

  110. Cortez, V.S., Robinette, M.L. & Colonna, M. Innate lymphoid cells: new insights into function and development. Curr. Opin. Immunol. 32C, 71–77 (2015).

    Google Scholar 

  111. Mueller, S.N., Gebhardt, T., Carbone, F.R. & Heath, W.R. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31, 137–161 (2013).

    CAS  PubMed  Google Scholar 

  112. Shin, H. & Iwasaki, A. Tissue-resident memory T cells. Immunol. Rev. 255, 165–181 (2013).

    PubMed  PubMed Central  Google Scholar 

  113. Cauley, L.S. & Lefrancois, L. Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol. 6, 14–23 (2013).

    CAS  PubMed  Google Scholar 

  114. Schenkel, J.M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Tait Wojno, E.D. & Artis, D. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe 12, 445–457 (2012).

    CAS  PubMed  Google Scholar 

  116. Ahern, P.P., Izcue, A., Maloy, K.J. & Powrie, F. The interleukin-23 axis in intestinal inflammation. Immunol. Rev. 226, 147–159 (2008).

    PubMed  Google Scholar 

  117. Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

    CAS  PubMed  Google Scholar 

  118. Wilson, S.R. et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155, 285–295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Buckley, K.M. & Rast, J.P. Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. Dev. Comp. Immunol. 49, 179–189 (2015).

    CAS  PubMed  Google Scholar 

  120. Guo, L., Junttila, I.S. & Paul, W.E. Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol. 33, 598–606 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    CAS  PubMed  Google Scholar 

  122. Salimi, M. et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210, 2939–2950 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Guo, L. et al. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc. Natl. Acad. Sci. USA 106, 13463–13468 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Moro, K. et al. Innate production of T(H)2 cytokines by adipose tissue–associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    CAS  PubMed  Google Scholar 

  125. Nakayamada, S. et al. Early Th1 cell differentiation is marked by a TFH cell-like transition. Immunity 35, 919–931 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Reinhardt, R.L., Liang, H.E. & Locksley, R.M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tan, J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014).

    CAS  PubMed  Google Scholar 

  128. Spencer, S.P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432–437 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Spencer, S.P. & Belkaid, Y. Dietary and commensal derived nutrients: shaping mucosal and systemic immunity. Curr. Opin. Immunol. 24, 379–384 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Moura-Alves, P. et al. AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512, 387–392 (2014).

    CAS  PubMed  Google Scholar 

  131. Stockinger, B., Di Meglio, P., Gialitakis, M. & Duarte, J.H. The aryl hydrocarbon receptor: multitasking in the immune system. Annu. Rev. Immunol. 32, 403–432 (2014).

    CAS  PubMed  Google Scholar 

  132. Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41, 296–310 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007).

    CAS  PubMed  Google Scholar 

  134. Henri, S. et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 207, 189–206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ballesteros-Tato, A., Leon, B., Lund, F.E. & Randall, T.D. Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control CD8+ T cell responses to influenza. Nat. Immunol. 11, 216–224 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. GeurtsvanKessel, C.H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b but not plasmacytoid dendritic cells. J. Exp. Med. 205, 1621–1634 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kourepini, E. et al. Osteopontin expression by CD103 dendritic cells drives intestinal inflammation. Proc. Natl. Acad. Sci. USA 111, E856–E865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Plantinga, M. et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38, 322–335 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Kumamoto for help with Table 1. Supported by the US National Institutes of Health (AI081884, AI062428 and AI064705 to A.I., and AI046688, AI089771 and DK071754 to R.M.), Else Kröner-Fresenius-Stiftung (R.M.) and the Howard Hughes Medical Institute (A.I. and R.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akiko Iwasaki or Ruslan Medzhitov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasaki, A., Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat Immunol 16, 343–353 (2015). https://doi.org/10.1038/ni.3123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing