Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Downregulation of natural killer cell–activating ligand CD155 by human cytomegalovirus UL141

Abstract

Natural killer (NK) cells are crucial in the control of cytomegalovirus infections in mice and humans. Here we show that the viral UL141 gene product has an immunomodulatory function that is associated with low-passage strains of human cytomegalovirus. UL141 mediated efficient protection of cells against killing by a wide range of human NK cell populations, including interferon-α-stimulated bulk cultures, polyclonal NK cell lines and most NK cell clones tested. Evasion of NK cell killing was mediated by UL141 blocking surface expression of CD155, which was previously identified as a ligand for NK cell-activating receptors CD226 (DNAM-1) and CD96 (TACTILE). The breadth of the UL141-mediated effect indicates that CD155 has a key role in regulating NK cell function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resistance to NK cell attack maps to the HCMV UL/b′ sequence.
Figure 2: UL141 induces protection against NK cell attack.
Figure 3: Characterization of gpUL141 expression.
Figure 4: UL141-mediated downregulation of cell surface CD155 detected by flow cytometry.
Figure 5: UL141-mediated downregulation of cell surface CD155 detected by fluorescence microscopy.
Figure 6: UL141 inhibits maturation of CD155.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Biron, C.A., Byron, K.S. & Sullivan, J.L. Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 320, 1731–1735 (1989).

    Article  CAS  Google Scholar 

  2. Karre, K. How to recognize a foreign submarine. Immunol. Rev. 155, 5–9 (1997).

    Article  CAS  Google Scholar 

  3. Carr, W.H., Little, A.M., Mocarski, E. & Parham, P. NK cell-mediated lysis of autologous HCMV-infected skin fibroblasts is highly variable among NK cell clones and polyclonal NK cell lines. Clin. Immunol. 105, 126–140 (2002).

    Article  CAS  Google Scholar 

  4. Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287, 1031–1033 (2000).

    Article  CAS  Google Scholar 

  5. Wang, E.C. et al. UL40-mediated NK evasion during productive infection with human cytomegalovirus. Proc. Natl. Acad. Sci. USA 99, 7570–7575 (2002).

    Article  CAS  Google Scholar 

  6. Cosman, D. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133 (2001).

    Article  CAS  Google Scholar 

  7. Kubin, M. et al. ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells. Eur. J. Immunol. 31, 1428–1437 (2001).

    Article  CAS  Google Scholar 

  8. Welte, S.A. et al. Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur. J. Immunol. 33, 194–203 (2003).

    Article  CAS  Google Scholar 

  9. Leong, C.C. et al. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: the role of endogenous class I major histocompatibility complex and a viral class I homolog. J. Exp. Med. 187, 1681–1687 (1998).

    Article  CAS  Google Scholar 

  10. Dunn, W. et al. Functional profiling of a human cytomegalovirus genome. Proc. Natl. Acad. Sci. USA 100, 14223–14228 (2003).

    Article  CAS  Google Scholar 

  11. Cha, T.A. et al. Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol. 70, 78–83 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Berstein, D.L. & Plotkin, S.A. Cytomegalovirus vaccines. in New Generation Vaccines (eds. Levine, M.M., Kaper, J.B., Rappuloi, R., Liu, M.A. & Good, M.F.) 649–659 (Marcel Dekker, New York, 2004).

    Google Scholar 

  13. Cerboni, C. et al. Human cytomegalovirus strain-dependent changes in NK cell recognition of infected fibroblasts. J. Immunol. 164, 4775–4782 (2000).

    Article  CAS  Google Scholar 

  14. Davison, A.J. et al. The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J. Gen. Virol. 84, 17–28 (2003).

    Article  CAS  Google Scholar 

  15. Penfold, M.E. et al. Cytomegalovirus encodes a potent α chemokine. Proc. Natl. Acad. Sci. USA 96, 9839–9844 (1999).

    Article  CAS  Google Scholar 

  16. Benedict, C.A. et al. Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. J. Immunol. 162, 6967–6970 (1999).

    CAS  PubMed  Google Scholar 

  17. Mocarski, E.S., Kemble, G.W., Lyle, J.M. & Greaves, R.F. A deletion mutant in the human cytomegalovirus gene encoding IE1(491aa) is replication defective due to a failure in autoregulation. Proc. Natl. Acad. Sci. USA 93, 11321–11326 (1996).

    Article  CAS  Google Scholar 

  18. Dolan, A. et al. Genetic content of wild-type human cytomegalovirus. J. Gen. Virol. 85, 1301–1312 (2004).

    Article  CAS  Google Scholar 

  19. Novotny, J., Rigoutsos, I., Coleman, D. & Shenk, T. In silico structural and functional analysis of the human cytomegalovirus (HHV5) genome. J. Mol. Biol. 310, 1151–1166 (2001).

    Article  CAS  Google Scholar 

  20. Bottino, C. et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198, 557–567 (2003).

    Article  CAS  Google Scholar 

  21. Fuchs, A., Cella, M., Giurisato, E., Shaw, A.S. & Colonna, M. Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J. Immunol. 172, 3994–3998 (2004).

    Article  CAS  Google Scholar 

  22. Bernhardt, G., Bibb, J.A., Bradley, J. & Wimmer, E. Molecular characterization of the cellular receptor for poliovirus. Virology 199, 105–113 (1994).

    Article  CAS  Google Scholar 

  23. Zibert, A. & Wimmer, E. N glycosylation of the virus binding domain is not essential for function of the human poliovirus receptor. J. Virol. 66, 7368–7373 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Aoki, J., Koike, S., Ise, I., Sato-Yoshida, Y. & Nomoto, A. Amino acid residues on human poliovirus receptor involved in interaction with poliovirus. J. Biol. Chem. 269, 8431–8438 (1994).

    CAS  PubMed  Google Scholar 

  25. Tahara-Hanaoka, S. et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol. 16, 533–538 (2004).

    Article  CAS  Google Scholar 

  26. Leis, M., Marschall, M. & Stamminger, T. Downregulation of the cellular adhesion molecule Thy-1 (CD90) by cytomegalovirus infection of human fibroblasts. J. Gen. Virol. 85, 1995–2000 (2004).

    Article  CAS  Google Scholar 

  27. Scholz, M. et al. Cytomegalovirus- and interferon-related effects on human endothelial cells. Cytomegalovirus infection reduces upregulation of HLA class II antigen expression after treatment with interferon-gamma. Hum. Immunol. 35, 230–238 (1992).

    Article  CAS  Google Scholar 

  28. Kojima, H. et al. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J. Biol. Chem. 278, 36748–36753 (2003).

    Article  CAS  Google Scholar 

  29. Shibuya, K. et al. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J. Exp. Med. 198, 1829–1839 (2003).

    Article  CAS  Google Scholar 

  30. Ohka, S. et al. Receptor (CD155)-dependent endocytosis of poliovirus and retrograde axonal transport of the endosome. J. Virol. 78, 7186–7198 (2004).

    Article  CAS  Google Scholar 

  31. Mueller, S., Cao, X., Welker, R. & Wimmer, E. Interaction of the poliovirus receptor CD155 with the dynein light chain Tctex-1 and its implication for poliovirus pathogenesis. J. Biol. Chem. 277, 7897–7904 (2002).

    Article  CAS  Google Scholar 

  32. Takai, Y., Irie, K., Shimizu, K., Sakisaka, T. & Ikeda, W. Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci. 94, 655–667 (2003).

    Article  CAS  Google Scholar 

  33. Oda, T., Ohka, S. & Nomoto, A. Ligand stimulation of CD155α inhibits cell adhesion and enhances cell migration in fibroblasts. Biochem. Biophys. Res. Commun. 319, 1253–1264 (2004).

    Article  CAS  Google Scholar 

  34. Reymond, N. et al. DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J. Exp. Med. 199, 1331–1341 (2004).

    Article  CAS  Google Scholar 

  35. McSharry, B.P., Jones, C.J., Skinner, J.W., Kipling, D. & Wilkinson, G.W. Human telomerase reverse transcriptase-immortalized MRC-5 and HCA2 human fibroblasts are fully permissive for human cytomegalovirus. J. Gen. Virol. 82, 855–863 (2001).

    Article  CAS  Google Scholar 

  36. Robertson, M.J. et al. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp. Hematol. 24, 406–415 (1996).

    CAS  PubMed  Google Scholar 

  37. McSharry, B.P., Tomasec, P., Neale, M.L. & Wilkinson, G.W. The most abundantly transcribed human cytomegalovirus gene (β 2.7) is non-essential for growth in vitro. J. Gen. Virol. 84, 2511–2516 (2003).

    Article  CAS  Google Scholar 

  38. He, T.C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Jones and D. Kipling for their cooperation with the telomerase immortalization of fibroblasts; V. Groh for MIC mAbs; O. Mandelboim for NKp30-Fc and NKp46-Fc proteins; and E. Mocarski, M. Wills and J. Sathish for discussions. Supported by the Wellcome Trust, Biotechnology and Biological Sciences Research Council and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin W G Wilkinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Amino acid sequence alignment of UL141 from 23 HCMV strains allowing a high degree of conservation. (PDF 69 kb)

Supplementary Fig. 2

Ig-like b sandwich domains encoded by HCMV UL141 (residues 15-114 in the mature protein), its orthologues in chimpanzee and rhesus cytomegalovirus (CCMV and RhCMV UL141), and the related UL14 gene in HCMV and CCMV. (PDF 54 kb)

Supplementary Fig. 3

Expression of a Secreted form of gpUL141. (PDF 138 kb)

Supplementary Fig. 4

GpUL141 is expressed with early-late phase kinetics. (PDF 47 kb)

Supplementary Fig. 5

Analysis of intracellular localization of gpUL141. (PDF 231 kb)

Supplementary Fig. 6

NK killing of autologous strain TB40E-Bart-infected fibroblasts is inhibited by treatment with the anti-CD155 mAb D171. (PDF 53 kb)

Supplementary Fig. 7

UL141, but not UL144 or UL145, inhibited expression of CD155 on stably transfected HEK-293 cells. (PDF 46 kb)

Supplementary Fig. 8

Pre-treatment with soluble UL141 blocks binding of the CD155 mAb D171. (PDF 59 kb)

Supplementary Fig. 9

Adhesion between NK cells and targets expression UL141. (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomasec, P., Wang, E., Davison, A. et al. Downregulation of natural killer cell–activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 6, 181–188 (2005). https://doi.org/10.1038/ni1156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing