Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toll-like receptor–mediated cytokine production is differentially regulated by glycogen synthase kinase 3

Abstract

The cellular mechanisms that directly regulate the inflammatory response after Toll-like receptor (TLR) stimulation are unresolved at present. Here we report that glycogen synthase kinase 3 (GSK3) differentially regulates TLR-mediated production of pro- and anti-inflammatory cytokines. Stimulation of monocytes or peripheral blood mononuclear cells with TLR2, TLR4, TLR5 or TLR9 agonists induced substantial increases in interleukin 10 production while suppressing the release of proinflammatory cytokines after GSK3 inhibition. GSK3 regulated the inflammatory response by differentially affecting the nuclear amounts of transcription factors NF-κB subunit p65 and CREB interacting with the coactivator CBP. Administration of a GSK3 inhibitor potently suppressed the proinflammatory response in mice receiving lipopolysaccharide and mediated protection from endotoxin shock. These findings demonstrate a regulatory function for GSK3 in modulating the inflammatory response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E. coli LPS induces the phosphorylation of Akt (Ser473) and GSK3-β (Ser9) through the PI(3)K-Akt pathway in human peripheral blood monocytes.
Figure 2: The PI(3)K pathway differentially modulates pro- and anti-inflammatory cytokine production by inhibition of GSK3.
Figure 3: The siRNA targeting GSK3-β enhances IL-10 and suppresses IL-12p40 by LPS-stimulated monocytes.
Figure 4: Inhibition of GSK3 differentially regulates pro- and anti-inflammatory cytokine production after TLR2, TLR4, TLR5 and TLR9 stimulation.
Figure 5: GSK3 inhibition affects the association of NF-κB p65 and CREB with CBP that regulates the production of IL-10 and IL-12.
Figure 6: The GSK3 inhibitor SB216763 protects mice from endotoxin shock.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  Google Scholar 

  2. Yang, R.B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284–288 (1998).

    Article  CAS  Google Scholar 

  3. Dinarello, C.A. Proinflammatory cytokines. Chest 118, 503–508 (2000).

    Article  CAS  Google Scholar 

  4. O'Neill, L.A. & Dinarello, C.A. The IL-1 receptor/Toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol. Today 21, 206–209 (2000).

    Article  CAS  Google Scholar 

  5. Monick, M.M. et al. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of beta-catenin. J. Immunol. 166, 4713–4720 (2001).

    Article  CAS  Google Scholar 

  6. Fukao, T. et al. PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat. Immunol. 3, 875–881 (2002).

    Article  CAS  Google Scholar 

  7. Fukao, T. et al. Selective loss of gastrointestinal mast cells and impaired immunity in PI3K-deficient mice. Nat. Immunol. 3, 295–304 (2002).

    Article  CAS  Google Scholar 

  8. Guha, M. & Mackman, N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J. Biol. Chem. 277, 32124–32132 (2002).

    Article  CAS  Google Scholar 

  9. Martin, M. et al. Role of the phosphatidylinositol 3 kinase-Akt pathway in the regulation of IL-10 and IL-12 by Porphyromonas gingivalis lipopolysaccharide. J. Immunol. 171, 717–725 (2003).

    Article  CAS  Google Scholar 

  10. Cantley, L.C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  Google Scholar 

  11. Arbibe, L. et al. Toll-like receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway. Nat. Immunol. 1, 533–540 (2000).

    Article  CAS  Google Scholar 

  12. Toker, A. & Cantley, L.C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673–676 (1997).

    Article  CAS  Google Scholar 

  13. Franke, T.F., Kaplan, D.R., Cantley, L.C. & Toker, A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665–668 (1997).

    Article  CAS  Google Scholar 

  14. Lawlor, M.A. & Alessi, D.R. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J. Cell Sci. 114, 2903–2910 (2001).

    CAS  PubMed  Google Scholar 

  15. Stokoe, D.L.R. et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277, 567–570 (1997).

    Article  CAS  Google Scholar 

  16. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  Google Scholar 

  17. Hoeflich, K.P. et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 406, 86–90 (2000).

    Article  CAS  Google Scholar 

  18. Demarchi, F., Bertoli, C., Sandy, P. & Schneider, C. Glycogen synthase kinase-3 β regulates NF-κB1/p105 stability. J. Biol. Chem. 278, 39583–39590 (2003).

    Article  CAS  Google Scholar 

  19. Demarchi, F., Verardo, R., Varnum, B., Brancolini, C. & Schneider, C. Gas6 anti-apoptotic signaling requires NF-κB activation. J. Biol. Chem. 276, 31738–31744 (2001).

    Article  CAS  Google Scholar 

  20. Nemeth, Z.H. et al. Lithium induces NF-κB activation and interleukin-8 production in human intestinal epithelial cells. J. Biol. Chem. 277, 7713–7719 (2002).

    Article  CAS  Google Scholar 

  21. Schwabe, R.F. & Brenner, D.A. Role of glycogen synthase kinase-3 in TNF-α-induced NF-κB activation and apoptosis in hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G204–G211 (2002).

    Article  CAS  Google Scholar 

  22. Grimes, C.A. & Jope, R.S. CREB DNA binding activity is inhibited by glycogen synthase kinase-3 β and facilitated by lithium. J. Neurochem. 78, 1219–1232 (2001).

    Article  CAS  Google Scholar 

  23. Doble, B.W. & Woodgett, J.R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175–1186 (2003).

    Article  CAS  Google Scholar 

  24. Kunick, C., Lauenroth, K., Leost, M., Meijer, L. & Lemcke, T. 1-Azakenpaullone is a selective inhibitor of glycogen synthase kinase-3 β. Bioorg. Med. Chem. Lett. 19, 413–416 (2004).

    Article  Google Scholar 

  25. Cross, D.A. et al. Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J. Neurochem. 77, 94–102 (2001).

    Article  CAS  Google Scholar 

  26. Meijer, L. et al. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem. Biol. 10, 1255–1266 (2003).

    Article  CAS  Google Scholar 

  27. Stambolic, V., Ruel, L. & Woodgett, J.R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664–1668 (1996).

    Article  CAS  Google Scholar 

  28. Woodgett, J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9, 2431–2438 (1990).

    Article  CAS  Google Scholar 

  29. Ghosh, S., May, M.J. & Kopp, E.B. NF-κB and rel proteins: evolutionary conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  Google Scholar 

  30. Sheppard, K.A. et al. Transcriptional activation by NF-κB requires multiple coactivators. Mol. Cell. Biol. 19, 6367–6378 (1999).

    Article  CAS  Google Scholar 

  31. Zhong, H., Voll, R.E. & Ghosh, S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1, 661–671 (1998).

    Article  CAS  Google Scholar 

  32. Parker, D. et al. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol. 16, 694–703 (1996).

    Article  CAS  Google Scholar 

  33. Parry, G.C. & Mackman, N. Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-κB-mediated transcription. J. Immunol. 159, 5450–5456 (1997).

    CAS  PubMed  Google Scholar 

  34. Platzer, C. et al. Cyclic adenosine monophosphate-responsive elements are involved in the transcriptional activation of the human IL-10 gene in monocytic cells. Eur. J. Immunol. 29, 3098–3104 (1999).

    Article  CAS  Google Scholar 

  35. Berg, D.J. et al. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J. Clin. Invest. 96, 2339–2347 (1995).

    Article  CAS  Google Scholar 

  36. Hirschfeld, M. et al. Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 69, 1477–1482 (2001).

    Article  CAS  Google Scholar 

  37. Jones, B.W. et al. Different Toll-like receptor agonists induce distinct macrophage responses. J. Leuk. Biol. 69, 1036–1044 (2001).

    CAS  Google Scholar 

  38. Re, F. & Strominger, J.L. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J. Biol. Chem. 276, 37692–37699 (2001).

    Article  CAS  Google Scholar 

  39. Rhee, S.H., Jones, B.W., Toshchakov, V., Vogel, S.N. & Fenton, M.J. Toll-like receptors 2 and 4 activate STAT1 serine phosphorylation by distinct mechanisms in macrophages. J. Biol. Chem. 278, 22506–22512 (2003).

    Article  CAS  Google Scholar 

  40. Schilling, D., Thomas, K., Nixdorff, K., Vogel, S.N. & Fenton, M.J. Toll-like receptor 4 and Toll-IL-1 receptor domain-containing adapter protein (TIRAP)/myeloid differentiation protein 88 adapter-like (Mal) contribute to maximal IL-6 expression in macrophages. J. Immunol. 169, 5874–5880 (2002).

    Article  CAS  Google Scholar 

  41. Toshchakov, V. et al. TLR4, but not TLR2, mediates IFN-β-induced STAT1α/β-dependent gene expression in macrophages. Nat. Immunol. 3, 392–398 (2002).

    Article  CAS  Google Scholar 

  42. Dillon, S. et al. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J. Immunol. 172, 4733–4743 (2004).

    Article  CAS  Google Scholar 

  43. Re, F. & Strominger, J.L. IL-10 released by concomitant TLR2 stimulation blocks the induction of a subset of Th1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells. J. Immunol. 173, 7548–7555 (2004).

    Article  CAS  Google Scholar 

  44. Pulendran, B. et al. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J. Immunol. 167, 5067–5076 (2001).

    Article  CAS  Google Scholar 

  45. Cohen, J. The immunopathogenesis of sepsis. Nature 420, 885–891 (2002).

    Article  CAS  Google Scholar 

  46. O'Brien, W.T. et al. Glycogen synthase kinase-3β haploinsufficiency mimics the behavioral and molecular effects of lithium. J. Neurosci. 24, 6791–6798 (2004).

    Article  CAS  Google Scholar 

  47. Hirschfeld, M., Ma, Y., Weis, J.H., Vogel, S.N. & Weis, J.J. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J. Immunol. 165, 18–22 (2000).

    Article  Google Scholar 

  48. Tapping, R.I., Akashi, S., Miyake, K., Godowski, P.J. & Tobias, P.S. Toll-like receptor 4, but not Toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J. Immunol. 165, 5780–5787 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by the US Public Health Service (DE 08182, DE 14215, DE 09081 and AI 056460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M., Rehani, K., Jope, R. et al. Toll-like receptor–mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6, 777–784 (2005). https://doi.org/10.1038/ni1221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing