Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of adenomatous polyposis coli gene function disrupts thymic development

Abstract

Loss of the adenomatous polyposis coli (APC) protein is a common initiating event in colon cancer. Here we show that thymocyte-specific loss of APC deregulated β-catenin signaling and suppressed Notch-dependent transcription. These events promoted the proliferation of cells of the double-negative 3 and 4 stages and reduced rearrangements between the variable, diversity and joining regions of the gene encoding T cell receptor (TCR) β, encouraging developmental progression of aberrant thymocytes lacking pre-TCR and αβ TCR. Simultaneously, the loss of APC prolonged the mitotic metaphase-to-anaphase checkpoint and impaired chromosome segregation, blocking development beyond the double-negative 4 stage. The result was extensive thymic atrophy and increased frequencies of thymocytes with chromosomal abnormalities. Thus, loss of APC in immature thymocytes has consequences distinct from those of deregulation of β-catenin signaling and is essential for T cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional Apc ablation in mouse thymocytes.
Figure 2: Mice with conditional Apc deficiency have reduced thymic cellularity and a blockade at the DN4 stage of thymocyte development.
Figure 3: Survival and proliferation of APC deficient thymocytes.
Figure 4: Suppression of Tcrb VDJ rearrangements after ablation of APC or stabilization of β-catenin.
Figure 5: Suppression of Notch activity by APC truncation and stabilization of β-catenin.
Figure 6: Expression of activated Notch1 partially restores intracellular TCRβ expression in LckCre-Apclox/lox468 and LckCre-Ctnnb1+/lox(ex3) thymocytes differentiating on OP9-DL1 stroma cells.
Figure 7: LckCre-Apclox/lox468 DN4 thymocytes divide and differentiate more slowly than LckCre or LckCre-Ctnnb1+/lox(ex3) DN4 thymocytes on OP9-DL1 stroma cells.
Figure 8: Ablation of APC results in inhibition of chromosome segregation after chromatide separation and the accumulation of cells with aberrant chromosome numbers.

Similar content being viewed by others

References

  1. van de Wetering, M., de Lau, W. & Clevers, H. WNT signaling and lymphocyte development. Cell 109, S13–S19 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Morin, P.J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or Apc. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Smits, R. et al. Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts. Gastroenterology 114, 275–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Sparks, A.B., Morin, P.J., Vogelstein, B. & Kinzler, K.W. Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58, 1130–1134 (1998).

    CAS  PubMed  Google Scholar 

  5. Miyoshi, Y. et al. Germ-line mutations of the Apc gene in 53 familial adenomatous polyposis patients. Proc. Natl. Acad. Sci. USA 89, 4452–4456 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Powell, S.M. et al. Molecular diagnosis of familial adenomatous polyposis. N. Engl. J. Med. 329, 1982–1987 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Miyaki, M. et al. Coexistence of somatic and germ-line mutations of APC gene in desmoid tumors from patients with familial adenomatous polyposis. Cancer Res. 53, 5079–5082 (1993).

    CAS  PubMed  Google Scholar 

  8. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Shih, I.M. et al. Top-down morphogenesis of colorectal tumors. Proc. Natl. Acad. Sci. USA 98, 2640–2645 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaplan, K.B. et al. A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nat. Cell Biol. 3, 429–432 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat. Cell Biol. 3, 433–438 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Martin, C.H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat. Immunol. 4, 866–873 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Shortman, K. & Wu, L. Early T lymphocyte progenitors. Annu. Rev. Immunol. 14, 29–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 4, 168–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Schwarz, B.A. & Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nat. Immunol. 5, 953–960 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Porritt, H.E. et al. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20, 735–745 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. von Boehmer, H. Aspects of lymphocyte developmental biology. Immunol. Today 18, 260–262 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H.R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ Lineage Thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Schilham, M.W. et al. Critical involvement of Tcf-1 in expansion of thymocytes. J. Immunol. 161, 3984–3991 (1998).

    CAS  PubMed  Google Scholar 

  23. Ioannidis, V., Beermann, F., Clevers, H. & Held, W. The β-catenin–TCF-1 pathway ensures CD4+CD8+ thymocyte survival. Nat. Immunol. 2, 691–697 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Okamura, R.M. et al. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8, 11–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, Y., Banerjee, D., Huelsken, J., Birchmeier, W. & Sen, J.M. Deletion of β-catenin impairs T cell development. Nat. Immunol. 4, 1177–1182 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Gounari, F. et al. Somatic activation of β-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat. Immunol. 2, 863–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Fodde, R. et al. A targeted chain-termination mutation in the mouse APC gene results in multiple intestinal tumors. Proc. Natl. Acad. Sci. USA 91, 8969–8973 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moser, A.R., Pitot, H.C. & Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Oshima, M. et al. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc. Natl. Acad. Sci. USA 92, 4482–4486 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18, 5931–5942 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Moore, N.C., Anderson, G., Williams, G.T., Owen, J.J. & Jenkinson, E.J. Developmental regulation of bcl-2 expression in the thymus. Immunology 81, 115–119 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Anderson, S.J., Abraham, K.M., Nakayama, T., Singer, A. & Perlmutter, R.M. Inhibition of T-cell receptor β-chain gene rearrangement by overexpression of the non-receptor protein tyrosine kinase p56lck. EMBO J. 11, 4877–4886 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duncan, A.W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6, 314–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Galceran, J., Sustmann, C., Hsu, S.C., Folberth, S. & Grosschedl, R. LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis. Genes Dev. 18, 2718–2723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet. 33, 416–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Martinez Arias, A. Interactions between Wingless and Notch during the assignment of cell fates in Drosophila. Int. J. Dev. Biol. 42, 325–333 (1998).

    CAS  PubMed  Google Scholar 

  38. Sicinska, E. et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4, 451–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Aoki, K., Tamai, Y., Horiike, S., Oshima, M. & Taketo, M.M. Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Δ716Cdx2+/ compound mutant mice. Nat. Genet. 35, 323–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. McDougall, S., Peterson, C.L. & Calame, K. A transcriptional enhancer 3′ of C β 2 in the T cell receptor β locus. Science 241, 205–208 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Su, L.K. et al. APC binds to the novel protein EB1. Cancer Res. 55, 2972–2977 (1995).

    CAS  PubMed  Google Scholar 

  42. Zumbrunn, J., Kinoshita, K., Hyman, A.A. & Nathke, I.S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 β phosphorylation. Curr. Biol. 11, 44–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Cleveland, D.W., Mao, Y. & Sullivan, K.F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Rieder, C.L., Schultz, A., Cole, R. & Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127, 1301–1310 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Li, X. & Nicklas, R.B. Mitotic forces control a cell-cycle checkpoint. Nature 373, 630–632 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Fehling, H.J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Hoffman, E.S. et al. Productive T-cell receptor β-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev. 10, 948–962 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Ciofani, M. et al. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J. Immunol. 172, 5230–5239 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Gounari, F. et al. Tracing lymphopoiesis with the aid of a pTα-controlled reporter gene. Nat. Immunol. 3, 489–496 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Hodgkin, P.D. et al. The importance of efficacy and partial agonism in evaluating models of B lymphocyte activation. Int. Rev. Immunol. 15, 101–127 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J.C. Zúñiga-Pflücker (University of Toronto, Toronto, Canada) for advice, support and the OP9-DL1 cells; I. Khan for help with the OP9-DL1 cultures; K. Georgopoulos (Massachusetts General Hospital), P. Sicinski and R. Van Etten for critical comments on the manuscript; I. Aifantis (University of Chicago), X. Li and A. Campese for the NotchIC retrovirus; and H. von Boehmer and R.M. Meyer for their interest and support. Supported by the National Institutes of Health (R01 AI059676-01 to F.G. and R01 CA104547-01A1 to K.K.), the Medical Foundation (Smith Family New Investigator Award to F.G.), the Dana Farber Cancer Institute (National Colorectal Cancer Research Alliance Award to K.K.) and the Claudia Adams Barr Program (K.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fotini Gounari or Khashayarsha Khazaie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Detection of mitotic abnormalities in DN LckCre-APClox/loxD468 thymocytes. (PDF 570 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gounari, F., Chang, R., Cowan, J. et al. Loss of adenomatous polyposis coli gene function disrupts thymic development. Nat Immunol 6, 800–809 (2005). https://doi.org/10.1038/ni1228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing