Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptional repressor Blimp-1 regulates T cell homeostasis and function

Abstract

The B lymphocyte–induced maturation protein 1 (Blimp-1) transcriptional repressor is required for terminal differentiation of B lymphocytes. Here we document a function for Blimp-1 in the T cell lineage. Blimp-1-deficient thymocytes showed decreased survival and Blimp-1-deficient mice had more peripheral effector T cells. Mice lacking Blimp-1 developed severe colitis as early as 6 weeks of age, and Blimp-1-deficient regulatory T cells were defective in blocking the development of colitis. Blimp-1 mRNA expression increased substantially in response to T cell receptor stimulation. Compared with wild-type CD4+ T cells, Blimp-1-deficient CD4+ T cells proliferated more and produced excess interleukin 2 and interferon-γ but reduced interleukin 10 after T cell receptor stimulation. These results emphasize a crucial function for Blimp-1 in controlling T cell homeostasis and activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The generation and phenotype of CKO mice.
Figure 2: Blimp-1 transcripts in T lineage cells.
Figure 3: Thymocyte development in CKO mice.
Figure 4: Hyperactivation of CKO peripheral T cells.
Figure 5: Treg cells in CKO mice.
Figure 6: Blimp-1 in colitis.
Figure 7: Hyper-responsive CKO CD4+ T cells.
Figure 8: IFN-γ, IL-4 and IL-10-production in CD4+ CKO T cells.

Similar content being viewed by others

References

  1. Shapiro-Shelef, M. & Calame, K. Regulation of plasma cell development. Nat. Rev. Immunol. 5, 230–242 (2005).

    Article  CAS  Google Scholar 

  2. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory cells. Immunity 19, 607–620 (2003).

    Article  CAS  Google Scholar 

  3. Turner, C.A., Jr., Mack, D.H. & Davis, M.M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    Article  CAS  Google Scholar 

  4. Shaffer, A.L. et al. XBP1 acts downstream of Blimp-1 to expand the secretory apparatus, promote organelle biogenesis, and increase protein synthesis during plasma cell differentiation. Immunity 21, 81–93 (2004).

    Article  CAS  Google Scholar 

  5. Chang, D.H. & Calame, K.L. The dynamic expression pattern of B lymphocyte induced maturation protein-1 (Blimp-1) during mouse embryonic development. Mech. Dev. 117, 305–309 (2002).

    Article  CAS  Google Scholar 

  6. Vincent, S.D. et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005).

    Article  CAS  Google Scholar 

  7. Chang, D., Angelin-Duclos, C. & Calame, K. BLIMP-1: trigger for differentiation of myeloid lineage. Nat. Immunol. 1, 169–176 (2000).

    Article  CAS  Google Scholar 

  8. Angelin-Duclos, C., Cattoretti, G., Lin, K.I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with blimp-1 expression in vivo. J. Immunol. 165, 5462–5471 (2000).

    Article  CAS  Google Scholar 

  9. Shaffer, A.L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  Google Scholar 

  10. Lin, K.I., Angelin-Duclos, C., Kuo, T.C. & Calame, K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol. Cell. Biol. 22, 4771–4780 (2002).

    Article  CAS  Google Scholar 

  11. Takahama, Y. et al. Functional competence of T cells in the absence of glycosylphosphatidylinositol-anchored proteins caused by T cell-specific disruption of the Pig-a gene. Eur. J. Immunol. 28, 2159–2166 (1998).

    Article  CAS  Google Scholar 

  12. Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3, 521–533 (2003).

    Article  CAS  Google Scholar 

  13. Tabrizifard, S. et al. Analysis of transcription factor expression during discrete stages of postnatal thymocyte differentiation. J. Immunol. 173, 1094–1102 (2004).

    Article  CAS  Google Scholar 

  14. Powrie, F., Correa-Oliveira, R., Mauze, S. & Coffman, R.L. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J. Exp. Med. 179, 589–600 (1994).

    Article  CAS  Google Scholar 

  15. Huber, S. et al. Cutting edge: TGF-β signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J. Immunol. 173, 6526–6531 (2004).

    Article  CAS  Google Scholar 

  16. Powrie, F. Immune regulation in the intestine: a balancing act between effector and regulatory T cell responses. Ann. NY Acad. Sci. 1029, 132–141 (2004).

    Article  CAS  Google Scholar 

  17. Kallies, A. et al. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J. Exp. Med. 200, 967–977 (2004).

    Article  CAS  Google Scholar 

  18. Cattoretti, G. et al. PRDM1/Blimp-1 is expressed in human B-lymphocytes committed to the plasma cell lineage. J. Pathol. 206, 76–86 (2005).

    Article  CAS  Google Scholar 

  19. Angelin-Duclos, C., Johnson, K., Liao, J., Lin, K.I. & Calame, K. An interfering form of Blimp-1 increases IgM secreting plasma cells and blocks maturation of peripheral B cells. Eur. J. Immunol. 32, 3765–3775 (2002).

    Article  CAS  Google Scholar 

  20. Liu, J.O. The yins of T cell activation. Sci. STKE 2005, re1 (2005).

  21. Dykstra, M., Cherukuri, A., Sohn, H.W., Tzeng, S.J. & Pierce, S.K. Location is everything: lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21, 457–481 (2003).

    Article  CAS  Google Scholar 

  22. Jang, I.K. & Gu, H. Negative regulation of TCR signaling and T-cell activation by selective protein degradation. Curr. Opin. Immunol. 15, 315–320 (2003).

    Article  CAS  Google Scholar 

  23. Schrum, A.G., Turka, L.A. & Palmer, E. Surface T-cell antigen receptor expression and availability for long-term antigenic signaling. Immunol. Rev. 196, 7–24 (2003).

    Article  CAS  Google Scholar 

  24. Chambers, C.A., Kuhns, M.S., Egen, J.G. & Allison, J.P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19, 565–594 (2001).

    Article  CAS  Google Scholar 

  25. Lin, L., Hron, J.D. & Peng, S.L. Regulation of NF-κB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 21, 203–213 (2004).

    Article  CAS  Google Scholar 

  26. Lin, L., Spoor, M.S., Gerth, A.J., Brody, S.L. & Peng, S.L. Modulation of Th1 activation and inflammation by the NF-κB repressor Foxj1. Science 303, 1017–1020 (2004).

    Article  CAS  Google Scholar 

  27. Vasanwala, F.H., Kusam, S., Toney, L.M. & Dent, A.L. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J. Immunol. 169, 1922–1929 (2002).

    Article  CAS  Google Scholar 

  28. Reljic, R., Wagner, S.D., Peakman, L.J. & Fearon, D.T. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J. Exp. Med. 192, 1841–1848 (2000).

    Article  CAS  Google Scholar 

  29. Tunyaplin, C. et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J. Immunol. 173, 1158–1165 (2004).

    Article  CAS  Google Scholar 

  30. Iwashima, M. Kinetic perspectives of T cell antigen receptor signaling. A two-tier model for T cell full activation. Immunol. Rev. 191, 196–210 (2003).

    Article  CAS  Google Scholar 

  31. Yoshida, H. et al. The transcription factor NF-ATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 8, 115–124 (1998).

    Article  CAS  Google Scholar 

  32. Oukka, M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9, 295–304 (1998).

    Article  CAS  Google Scholar 

  33. Hodge, M.R. et al. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4, 397–405 (1996).

    Article  CAS  Google Scholar 

  34. Xanthoudakis, S. et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272, 892–895 (1996).

    Article  CAS  Google Scholar 

  35. Shaffer, A.L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199–212 (2000).

    Article  CAS  Google Scholar 

  36. Lund, R.J., Ylikoski, E.K., Aittokallio, T., Nevalainen, O. & Lahesmaa, R. Kinetics and STAT4- or STAT6-mediated regulation of genes involved in lymphocyte polarization to Th1 and Th2 cells. Eur. J. Immunol. 33, 1105–1116 (2003).

    Article  CAS  Google Scholar 

  37. Kusam, S., Toney, L.M., Sato, H. & Dent, A.L. Inhibition of Th2 differentiation and GATA-3 expression by BCL-6. J. Immunol. 170, 2435–2441 (2003).

    Article  CAS  Google Scholar 

  38. Harris, M.B. et al. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of Iε transcription and immunoglobulin E switching. Mol. Cell. Biol. 19, 7264–7275 (1999).

    Article  CAS  Google Scholar 

  39. Ichii, H. et al. Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat. Immunol. 3, 558–563 (2002).

    Article  CAS  Google Scholar 

  40. Grossman, Z., Min, B., Meier-Schellersheim, M. & Paul, W.E. Concomitant regulation of T-cell activation and homeostasis. Nat. Rev. Immunol. 4, 387–395 (2004).

    Article  CAS  Google Scholar 

  41. Kieper, W.C., Burghardt, J.T. & Surh, C.D. A role for TCR affinity in regulating naive T cell homeostasis. J. Immunol. 172, 40–44 (2004).

    Article  CAS  Google Scholar 

  42. Werlen, G., Hausmann, B., Naeher, D. & Palmer, E. Signaling life and death in the thymus: timing is everything. Science 299, 1859–1863 (2003).

    Article  CAS  Google Scholar 

  43. Surh, C.D. & Sprent, J. Homeostatic T cell proliferation: how far can T cells be activated to self-ligands? J. Exp. Med. 192, F9–F14 (2000).

    Article  CAS  Google Scholar 

  44. Jameson, S.C. Maintaining the norm: T-cell homeostasis. Nat. Rev. Immunol. 2, 547–556 (2002).

    Article  CAS  Google Scholar 

  45. Thornton, A.M. & Shevach, E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  Google Scholar 

  46. Fahlen, L. et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 737–746 (2005).

    Article  CAS  Google Scholar 

  47. Strober, W., Fuss, I.J. & Blumberg, R.S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 20, 495–549 (2002).

    Article  CAS  Google Scholar 

  48. Ludviksson, B.R., Gray, B., Strober, W. & Ehrhardt, R.O. Dysregulated intrathymic development in the IL-2-deficient mouse leads to colitis-inducing thymocytes. J. Immunol. 158, 104–111 (1997).

    CAS  PubMed  Google Scholar 

  49. Hollander, G.A. et al. Severe colitis in mice with aberrant thymic selection. Immunity 3, 27–38 (1995).

    Article  CAS  Google Scholar 

  50. Koh, W.P. et al. TCR-mediated involvement of CD4+ transgenic T cells in spontaneous inflammatory bowel disease in lymphopenic mice. J. Immunol. 162, 7208–7216 (1999).

    CAS  PubMed  Google Scholar 

  51. Wells, A.D., Gudmundsdottir, H. & Turka, L.A. Following the fate of individual T cells throughout activation and clonal expansion. Signals from T cell receptor and CD28 differentially regulate the induction and duration of a proliferative response. J. Clin. Invest. 100, 3173–3183 (1997).

    Article  CAS  Google Scholar 

  52. Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1, 553–562 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Gu and Y.-R. Zou for advice and for critical reading of the manuscript; the Calame laboratory for advice; J. Liao for assistance with the mice; and D. Savitsky for help with the DSS colitis experiments. Supported by the National Institutes of Health (RO1 AI50659 and RO1 AI43576 to K.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Calame.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Primer sequences used for Quantitative PCR. (PDF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, G., Cimmino, L., Shapiro-Shelef, M. et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 7, 457–465 (2006). https://doi.org/10.1038/ni1320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing