Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of diacylglycerol metabolism impairs the induction of T cell anergy

Abstract

Anergic T cells have altered diacylglycerol metabolism, but whether that altered metabolism has a causative function in the induction of T cell anergy is not apparent. To test the importance of diacylglycerol metabolism in T cell anergy, we manipulated diacylglycerol kinases (DGKs), which are enzymes that terminate diacylglycerol-dependent signaling. Overexpression of DGK-α resulted in a defect in T cell receptor signaling that is characteristic of anergy. We generated DGK-α-deficient mice and found that DGK-α-deficient T cells had more diacylglycerol-dependent T cell receptor signaling. In vivo anergy induction was impaired in DGK-α-deficient mice. When stimulated in anergy-producing conditions, T cells lacking DGK-α or DGK-ζ proliferated and produced interleukin 2. Pharmacological inhibition of DGK-α activity in DGK-ζ-deficient T cells that received an anergizing stimulus proliferated similarly to wild-type T cells that received CD28 costimulation and prevented anergy induction. Our findings suggest that regulation of diacylglycerol metabolism is critical in determining whether activation or anergy ensues after T cell receptor stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Costimulation increases the hydrolysis of PtdIns(4,5)P2 and the generation of inositol trisphosphate but does not affect the conversion of DAG to phosphatidic acid.
Figure 2: Forced DGK-α expression in Jurkat T cells blocks TCR-induced AP-1 activity but does not affect calcium flux.
Figure 3: DGK-α deficiency does not alter the surface phenotype of peripheral CD4+ T cells.
Figure 4: DGK-α deficiency results in increased DAG-dependent TCR signaling but does not affect calcium flux.
Figure 5: Dgka−/− T cells are hyperproliferative.
Figure 6: In vivo anergy induction is impaired by DGK-α deficiency.
Figure 7: DGK deficiency decreases the requirement for costimulation.
Figure 8: DGK deficiency impairs T cell anergy.

Similar content being viewed by others

References

  1. Mathis, D. & Benoist, C. Back to central tolerance. Immunity 20, 509–516 (2004).

    Article  CAS  Google Scholar 

  2. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).

    Article  CAS  Google Scholar 

  3. Schwartz, R.H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

    Article  CAS  Google Scholar 

  4. Kopp, E. & Medzhitov, R. Recognition of microbial infection by Toll-like receptors. Curr. Opin. Immunol. 15, 396–401 (2003).

    Article  CAS  Google Scholar 

  5. Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat. Immunol. 5, 255–265 (2004).

    Article  CAS  Google Scholar 

  6. Safford, M. et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat. Immunol. 6, 472–480 (2005).

    Article  CAS  Google Scholar 

  7. Gajewski, T.F., Qian, D., Fields, P. & Fitch, F.W. Anergic T-lymphocyte clones have altered inositol phosphate, calcium, and tyrosine kinase signaling pathways. Proc. Natl. Acad. Sci. USA 91, 38–42 (1994).

    Article  CAS  Google Scholar 

  8. Wells, A.D. et al. Regulation of T cell activation and tolerance by phospholipase C γ-1-dependent integrin avidity modulation. J. Immunol. 170, 4127–4133 (2003).

    Article  CAS  Google Scholar 

  9. Kang, S.M. et al. Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 257, 1134–1138 (1992).

    Article  CAS  Google Scholar 

  10. Li, W., Whaley, C.D., Mondino, A. & Mueller, D.L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science 271, 1272–1276 (1996).

    Article  CAS  Google Scholar 

  11. Fields, P.E., Gajewski, T.F. & Fitch, F.W. Blocked Ras activation in anergic CD4+ T cells. Science 271, 1276–1278 (1996).

    Article  CAS  Google Scholar 

  12. Acuto, O., Mise-Omata, S., Mangino, G. & Michel, F. Molecular modifiers of T cell antigen receptor triggering threshold: the mechanism of CD28 costimulatory receptor. Immunol. Rev. 192, 21–31 (2003).

    Article  CAS  Google Scholar 

  13. Frauwirth, K.A. & Thompson, C.B. Regulation of T lymphocyte metabolism. J. Immunol. 172, 4661–4665 (2004).

    Article  CAS  Google Scholar 

  14. Lindstein, T., June, C.H., Ledbetter, J.A., Stella, G. & Thompson, C.B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244, 339–343 (1989).

    Article  CAS  Google Scholar 

  15. Blanchet, F., Cardona, A., Letimier, F.A., Hershfield, M.S. & Acuto, O. CD28 costimulatory signal induces protein arginine methylation in T cells. J. Exp. Med. 202, 371–377 (2005).

    Article  CAS  Google Scholar 

  16. Shapiro, V.S., Truitt, K.E., Imboden, J.B. & Weiss, A. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol. Cell. Biol. 17, 4051–4058 (1997).

    Article  CAS  Google Scholar 

  17. Cory, S. & Adams, J.M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647–656 (2002).

    Article  CAS  Google Scholar 

  18. Fox, C.J., Hammerman, P.S. & Thompson, C.B. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5, 844–852 (2005).

    Article  CAS  Google Scholar 

  19. Jenkins, M.K., Pardoll, D.M., Mizuguchi, J., Chused, T.M. & Schwartz, R.H. Molecular events in the induction of a nonresponsive state in interleukin 2-producing helper T-lymphocyte clones. Proc. Natl. Acad. Sci. USA 84, 5409–5413 (1987).

    Article  CAS  Google Scholar 

  20. Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002).

    Article  CAS  Google Scholar 

  21. Su, B. et al. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77, 727–736 (1994).

    Article  Google Scholar 

  22. Harhaj, E.W. & Sun, S.C. IκB kinases serve as a target of CD28 signaling. J. Biol. Chem. 273, 25185–25190 (1998).

    Article  CAS  Google Scholar 

  23. Lyakh, L., Ghosh, P. & Rice, N.R. Expression of NFAT-family proteins in normal human T cells. Mol. Cell. Biol. 17, 2475–2484 (1997).

    Article  CAS  Google Scholar 

  24. Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C. & Healy, J.I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  Google Scholar 

  25. Dower, N.A. et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat. Immunol. 1, 317–321 (2000).

    Article  CAS  Google Scholar 

  26. Luo, B., Regier, D.S., Prescott, S.M. & Topham, M.K. Diacylglycerol kinases. Cell. Signal. 16, 983–989 (2004).

    Article  CAS  Google Scholar 

  27. Zhong, X.P. et al. Enhanced T cell responses due to diacylglycerol kinase-ζ deficiency. Nat. Immunol. 4, 882–890 (2003).

    Article  CAS  Google Scholar 

  28. Zhong, X.P. et al. Regulation of T cell receptor-induced activation of the Ras-ERK pathway by diacylglycerol kinase ζ. J. Biol. Chem. 277, 31089–31098 (2002).

    Article  CAS  Google Scholar 

  29. Berney, S.M. & Atkinson, T.P. Phosphatidylinositol hydrolysis in freshly isolated human T lymphocytes. J. Immunol. Methods 186, 71–77 (1995).

    Article  CAS  Google Scholar 

  30. Antony, P. et al. B-cell antigen receptor activates transcription factors NFAT (nuclear factor of activated T-cells) and NF-κB (nuclear factor κB) via a mechanism that involves diacylglycerol. Biochem. Soc. Trans. 32, 113–115 (2004).

    Article  CAS  Google Scholar 

  31. Rellahan, B.L., Jones, L.A., Kruisbeek, A.M., Fry, A.M. & Matis, L.A. In vivo induction of anergy in peripheral Vβ8+ T cells by staphylococcal enterotoxin B. J. Exp. Med. 172, 1091–1100 (1990).

    Article  CAS  Google Scholar 

  32. Kawabe, Y. & Ochi, A. Selective anergy of Vβ8+,CD4+ T cells in staphylococcus enterotoxin B-primed mice. J. Exp. Med. 172, 1065–1070 (1990).

    Article  CAS  Google Scholar 

  33. Jiang, Y., Sakane, F., Kanoh, H. & Walsh, J.P. Selectivity of the diacylglycerol kinase inhibitor 3-[2-(4-[bis-(4-fluorophenyl)methylene]-1-piperidinyl)ethyl]-2, 3-dihydro-2-thioxo-4(1H)quinazolinone (R59949) among diacylglycerol kinase subtypes. Biochem. Pharmacol. 59, 763–772 (2000).

    Article  CAS  Google Scholar 

  34. Jones, D.R., Sanjuan, M.A., Stone, J.C. & Merida, I. Expression of a catalytically inactive form of diacylglycerol kinase α induces sustained signaling through RasGRP. FASEB J. 16, 595–597 (2002).

    Article  CAS  Google Scholar 

  35. Merida, I., Williamson, P., Smith, K. & Gaulton, G.N. The role of diacylglycerol kinase activation and phosphatidate accumulation in interleukin-2-dependent lymphocyte proliferation. DNA Cell Biol. 12, 473–479 (1993).

    Article  CAS  Google Scholar 

  36. Williamson, P., Merida, I. & Gaulton, G. Protein and lipid kinase activation cascades in interleukin-2 receptor signalling. Semin. Immunol. 5, 337–344 (1993).

    Article  CAS  Google Scholar 

  37. Flores, I., Casaseca, T., Martinez, A.C., Kanoh, H. & Merida, I. Phosphatidic acid generation through interleukin 2 (IL-2)-induced α-diacylglycerol kinase activation is an essential step in IL-2-mediated lymphocyte proliferation. J. Biol. Chem. 271, 10334–10340 (1996).

    Article  CAS  Google Scholar 

  38. Jones, D.R., Flores, I., Diaz, E., Martinez, C. & Merida, I. Interleukin-2 stimulates a late increase in phosphatidic acid production in the absence of phospholipase D activation. FEBS Lett. 433, 23–27 (1998).

    Article  CAS  Google Scholar 

  39. Flores, I. et al. Diacylglycerol kinase inhibition prevents IL-2-induced G1 to S transition through a phosphatidylinositol-3 kinase-independent mechanism. J. Immunol. 163, 708–714 (1999).

    CAS  PubMed  Google Scholar 

  40. Boonen, G.J. et al. CD28 induces cell cycle progression by IL-2-independent down-regulation of p27kip1 expression in human peripheral T lymphocytes. Eur. J. Immunol. 29, 789–798 (1999).

    Article  CAS  Google Scholar 

  41. Jenkins, M.K. The role of cell division in the induction of clonal anergy. Immunol. Today 13, 69–73 (1992).

    Article  CAS  Google Scholar 

  42. Topham, M.K. & Prescott, S.M. Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J. Biol. Chem. 274, 11447–11450 (1999).

    Article  CAS  Google Scholar 

  43. English, D. Phosphatidic acid: a lipid messenger involved in intracellular and extracellular signalling. Cell. Signal. 8, 341–347 (1996).

    Article  CAS  Google Scholar 

  44. Avila-Flores, A., Santos, T., Rincon, E. & Merida, I. Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid. J. Biol. Chem. 280, 10091–10099 (2005).

    Article  CAS  Google Scholar 

  45. Jones, G.A. & Carpenter, G. The regulation of phospholipase C-γ1 by phosphatidic acid. Assessment of kinetic parameters. J. Biol. Chem. 268, 20845–20850 (1993).

    CAS  PubMed  Google Scholar 

  46. Luo, B., Prescott, S.M. & Topham, M.K. Diacylglycerol kinase ζ regulates phosphatidylinositol 4-phosphate 5-kinase Iα by a novel mechanism. Cell. Signal. 16, 891–897 (2004).

    Article  CAS  Google Scholar 

  47. Lauener, R., Shen, Y., Duronio, V. & Salari, H. Selective inhibition of phosphatidylinositol 3-kinase by phosphatidic acid and related lipids. Biochem. Biophys. Res. Commun. 215, 8–14 (1995).

    Article  CAS  Google Scholar 

  48. Sanjuan, M.A. et al. T cell activation in vivo targets diacylglycerol kinase α to the membrane: a novel mechanism for Ras attenuation. J. Immunol. 170, 2877–2883 (2003).

    Article  CAS  Google Scholar 

  49. Fukunaga-Takenaka, R. et al. Importance of chroman ring and tyrosine phosphorylation in the subtype-specific translocation and activation of diacylglycerol kinase α by D-α-tocopherol. Genes Cells 10, 311–319 (2005).

    Article  CAS  Google Scholar 

  50. Ali, H. et al. Selective translocation of diacylglycerol kinase ζ in hippocampal neurons under transient forebrain ischemia. Neurosci. Lett. 372, 190–195 (2004).

    Article  CAS  Google Scholar 

  51. D'Santos, C.S., Clarke, J.H., Irvine, R.F. & Divecha, N. Nuclei contain two differentially regulated pools of diacylglycerol. Curr. Biol. 9, 437–440 (1999).

    Article  CAS  Google Scholar 

  52. Topham, M.K. et al. Protein kinase C regulates the nuclear localization of diacylglycerol kinase-ζ. Nature 394, 697–700 (1998).

    Article  CAS  Google Scholar 

  53. Abramovici, H., Hogan, A.B., Obagi, C., Topham, M.K. & Gee, S.H. Diacylglycerol kinase-zeta localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins. Mol. Biol. Cell 14, 4499–4511 (2003).

    Article  CAS  Google Scholar 

  54. Cipres, A. et al. Regulation of diacylglycerol kinase α by phosphoinositide 3-kinase lipid products. J. Biol. Chem. 278, 35629–35635 (2003).

    Article  CAS  Google Scholar 

  55. Luo, B., Prescott, S.M. & Topham, M.K. Protein kinase C α phosphorylates and negatively regulates diacylglycerol kinase ζ. J. Biol. Chem. 278, 39542–39547 (2003).

    Article  CAS  Google Scholar 

  56. Vakoc, C.R., Mandat, S.A., Olenchock, B.A. & Blobel, G.A. Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381–391 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Bock and D. Snyder (Transgenic and Knock-out Mouse Core Facility, Comprehensive Cancer Center, Duke University, Durham, North Carolina) for generating targeted embryonic stem clones and chimeric mice, and J. Stadanlick for critical review of the manuscript. Supported by the Huntsman Cancer Foundation (M.K.T.), the US National Institutes of Health (CA95463 to M.K.T. and R01 AI058019 to G.A.K.), the Department of Energy (DEFG0204ER63829 to M.K.T.) and the National Cancer Institute (T32CA09140 to B.A.O.).

Author information

Authors and Affiliations

Authors

Contributions

B.A.O., R.G., J.H.C. and M.J. contributed experimental work and data analyses; M.K.T. contributed essential reagents; G.A.K. and X.-P.Z. supervised the studies; and all authors contributed intellectually to the project.

Corresponding authors

Correspondence to Gary A Koretzky or Xiao-Ping Zhong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Amounts of transcripts encoding DGK-α and DGK-ζ decreased after T cell activation. (PDF 51 kb)

Supplementary Fig. 2

Generation of Dgka-/- mice. (PDF 79 kb)

Supplementary Fig. 3

DGK-α deficiency does not affect T cell development. (PDF 80 kb)

Supplementary Fig. 4

DGK-α deficiency does not alter phenotype of peripheral CD8+ cells. (PDF 63 kb)

Supplementary Fig. 5

DGK-α deficiency increases T cell proliferation in response to anergizing stimuli. (PDF 57 kb)

Supplementary Methods (PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olenchock, B., Guo, R., Carpenter, J. et al. Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol 7, 1174–1181 (2006). https://doi.org/10.1038/ni1400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing