Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses

Abstract

Phosphorylation of histone H3 at Ser10 increases chromatin accessibility to transcription factor NF-κB on a subset of genes involved in immune responses. Here we report that a bacterial pathogen abrogated phosphorylation of histone H3 to 'shape' the transcriptional responses of infected host cells. We identify the Shigella flexneri protein effector OspF as a dually specific phosphatase that dephosphorylated mitogen-activated protein kinases in the nucleus, thus preventing histone H3 phosphorylation at Ser10 in a gene-specific way. That activity of OspF enabled shigella to block the activation of a subset of NF-κB-responsive genes, leading to compromised recruitment of polymorphonuclear leukocytes to infected tissues. S. flexneri has thus evolved the capacity to precisely modulate host cell epigenetic 'information' as a strategy for repressing innate immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shigella inactivates Erk in the nucleus.
Figure 2: OspF is a DSP.
Figure 3: OspF is selective for the inactivation of Erk and p38.
Figure 4: OspF localizes to the nucleus of shigella-infected cells.
Figure 5: OspF represses a subset of genes involved in the immune response.
Figure 6: OspF targets H3pS10 in a MAPK-dependent way.
Figure 7: OspF impairs the formation of histone H3–phosphorylated promoters in a gene-selective way.
Figure 8: OspF represses polymorphonuclear leukocyte recruitment and restricts bacterial invasion of shigella-infected tissues.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Jung, H.C. et al. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J. Clin. Invest. 95, 55–65 (1995).

    Article  CAS  Google Scholar 

  2. Girardin, S.E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    Article  CAS  Google Scholar 

  3. Sansonetti, P.J., Arondel, J., Huerre, M., Harada, A. & Matsushima, K. Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. Infect. Immun. 67, 1471–1480 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Philpott, D.J., Yamaoka, S., Israel, A. & Sansonetti, P.J. Invasive Shigella flexneri activates NF-κB through a lipopolysaccharide-dependent innate intracellular response and leads to IL-8 expression in epithelial cells. J. Immunol. 165, 903–914 (2000).

    Article  CAS  Google Scholar 

  5. Kim, D.W. et al. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc. Natl. Acad. Sci. USA 102, 14046–14051 (2005).

    Article  CAS  Google Scholar 

  6. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  CAS  Google Scholar 

  7. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  8. Thomson, S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18, 4779–4793 (1999).

    Article  CAS  Google Scholar 

  9. Clayton, A.L., Rose, S., Barratt, M.J. & Mahadevan, L.C. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J. 19, 3714–3726 (2000).

    Article  CAS  Google Scholar 

  10. Saccani, S., Pantano, S. & Natoli, G. p38-Dependent marking of inflammatory genes for increased NF-κB recruitment. Nat. Immunol. 3, 69–75 (2002).

    Article  CAS  Google Scholar 

  11. Clayton, A.L. & Mahadevan, L.C. MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett. 546, 51–58 (2003).

    Article  CAS  Google Scholar 

  12. Volmat, V., Camps, M., Arkinstall, S., Pouyssegur, J. & Lenormand, P. The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases. J. Cell Sci. 114, 3433–3443 (2001).

    CAS  PubMed  Google Scholar 

  13. Brondello, J.M., Brunet, A., Pouyssegur, J. & McKenzie, F.R. The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade. J. Biol. Chem. 272, 1368–1376 (1997).

    Article  CAS  Google Scholar 

  14. Menard, R., Sansonetti, P. & Parsot, C. The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J. 13, 5293–5302 (1994).

    Article  CAS  Google Scholar 

  15. Mavris, M., Sansonetti, P.J. & Parsot, C. Identification of the cis-acting site involved in activation of promoters regulated by activity of the type III secretion apparatus in Shigella flexneri. J. Bacteriol. 184, 6751–6759 (2002).

    Article  CAS  Google Scholar 

  16. Hoffmann, E., Dittrich-Breiholz, O., Holtmann, H. & Kracht, M. Multiple control of interleukin-8 gene expression. J. Leukoc. Biol. 72, 847–855 (2002).

    CAS  PubMed  Google Scholar 

  17. Muegge, K. Preparing the target for the bullet. Nat. Immunol. 3, 16–17 (2002).

    Article  CAS  Google Scholar 

  18. Xia, C. et al. Novel sites in the p65 subunit of NF-κB interact with TFIIB to facilitate NF-κB induced transcription. FEBS Lett. 561, 217–222 (2004).

    Article  CAS  Google Scholar 

  19. Selsted, M.E., Szklarek, D. & Lehrer, R.I. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect. Immun. 45, 150–154 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Andersson, K. et al. YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol. Microbiol. 20, 1057–1069 (1996).

    Article  CAS  Google Scholar 

  21. Fu, Y. & Galan, J.E. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol. Microbiol. 27, 359–368 (1998).

    Article  CAS  Google Scholar 

  22. Espinosa, A., Guo, M., Tam, V.C., Fu, Z.Q. & Alfano, J.R. The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Mol. Microbiol. 49, 377–387 (2003).

    Article  CAS  Google Scholar 

  23. Kennelly, P.J. Protein phosphatases–a phylogenetic perspective. Chem. Rev. 101, 2291–2312 (2001).

    Article  CAS  Google Scholar 

  24. Zhang, Z.Y. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu. Rev. Pharmacol. Toxicol. 42, 209–234 (2002).

    Article  CAS  Google Scholar 

  25. Natoli, G., Saccani, S., Bosisio, D. & Marazzi, I. Interactions of NF-κB with chromatin: the art of being at the right place at the right time. Nat. Immunol. 6, 439–445 (2005).

    Article  CAS  Google Scholar 

  26. Zurawski, D.V., Mitsuhata, C., Mumy, K.L., McCormick, B.A. & Maurelli, A.T. OspF and OspC1 are Shigella flexneri type III secretion system effectors that are required for postinvasion aspects of virulence. Infect. Immun. 74, 5964–5976 (2006).

    Article  CAS  Google Scholar 

  27. Alepuz, P.M., Jovanovic, A., Reiser, V. & Ammerer, G. Stress-induced map kinase Hog1 is part of transcription activation complexes. Mol. Cell 7, 767–777 (2001).

    Article  CAS  Google Scholar 

  28. Simone, C. et al. p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat. Genet. 36, 738–743 (2004).

    Article  CAS  Google Scholar 

  29. Pokholok, D.K., Zeitlinger, J., Hannett, N.M., Reynolds, D.B. & Young, R.A. Activated signal transduction kinases frequently occupy target genes. Science 313, 533–536 (2006).

    Article  CAS  Google Scholar 

  30. Wang, Y., Zhang, W., Jin, Y., Johansen, J. & Johansen, K.M. The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105, 433–443 (2001).

    Article  CAS  Google Scholar 

  31. Dyson, M.H. et al. MAP kinase-mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2. J. Cell Sci. 118, 2247–2259 (2005).

    Article  CAS  Google Scholar 

  32. Singer, M. & Sansonetti, P.J. IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. J. Immunol. 173, 4197–4206 (2004).

    Article  CAS  Google Scholar 

  33. Perdomo, O.J. et al. Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J. Exp. Med. 180, 1307–1319 (1994).

    Article  CAS  Google Scholar 

  34. Perdomo, J.J., Gounon, P. & Sansonetti, P.J. Polymorphonuclear leukocyte transmigration promotes invasion of colonic epithelial monolayer by Shigella flexneri. J. Clin. Invest. 93, 633–643 (1994).

    Article  CAS  Google Scholar 

  35. Dieu, M.C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

    Article  CAS  Google Scholar 

  36. Fahy, O.L., Townley, S.L., Coates, N.J., Clark-Lewis, I. & McColl, S.R. Control of Salmonella dissemination in vivo by macrophage inflammatory protein (MIP)-3α/CCL20. Lab. Invest. 84, 1501–1511 (2004).

    Article  CAS  Google Scholar 

  37. Harper, J.V. Synchronization of cell populations in G1/S and G2/M phases of the cell cycle. Methods Mol. Biol. 296, 157–166 (2005).

    CAS  PubMed  Google Scholar 

  38. Mateescu, B., England, P., Halgand, F., Yaniv, M. & Muchardt, C. Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep. 5, 490–496 (2004).

    Article  CAS  Google Scholar 

  39. Pedron, T., Thibault, C. & Sansonetti, P.J. The invasive phenotype of Shigella flexneri directs a distinct gene expression pattern in the human intestinal epithelial cell line Caco-2. J. Biol. Chem. 278, 33878–33886 (2003).

    Article  CAS  Google Scholar 

  40. Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98, 31–36 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Weil and S. Memet for critical reading of the manuscript; J. Rohde, C. Rougeot, L. Touqui and A. Garcia for discussions; and B. Regnault and J. Bergounioux for technical assistance. The pGEX 2T plasmid containing human Erk2 was a gift from C. Marshall (Institute of Cancer Research); antibody to histone H3 methylated at Lys9 and phosphorylated at Ser10 was a gift from C. Muchardt (Institut Pasteur); and anti-p50 and anti-p65 were gifts from R. Weil (Institut Pasteur). Supported by the Howard Hughes Medical Institute (P.J.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussions and manuscript criticism; L.A. designed and did most of the experiments and wrote the manuscript; D.W.K. and C.P. provided the ospF mutant and the trans-complemented strains, the E. coli strain containing pGEX4T2-OspF, the OspG and IpaH proteins, and polyclonal antibody to OspF; E.B. did mathematical analysis of the quantitative PCR data; T.P. did the microarrray and immunolabeling experiments; B.M. examined the effect of OspF on purified histones; B.M. and C.M. produced and characterized the antibody to histone H3 methylated at Lys9 and phosphorylated at Ser10; and P.J.S. did the in vivo rabbit infection experiments and the histological data analysis.

Corresponding author

Correspondence to Laurence Arbibe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

OspF homology with other putative virulence proteins. (PDF 629 kb)

Supplementary Fig. 2

Dephosphorylation of the 33P-labeled Erk2 by OspF and MKP1. (PDF 126 kb)

Supplementary Fig. 3

Hierarchical clustering of the OspF-modulated genes. (PDF 684 kb)

Supplementary Fig. 4

OspF does not directly dephosphorylate histone H3 at serine 10. (PDF 157 kb)

Supplementary Fig. 5

SDS-PAGE analysis of purified GST-OspF. (PDF 744 kb)

Supplementary Methods (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbibe, L., Kim, D., Batsche, E. et al. An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nat Immunol 8, 47–56 (2007). https://doi.org/10.1038/ni1423

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1423

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing