Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology

Abstract

Studies have shown that transforming growth factor-β (TGF-β) and interleukin 6 (IL-6) are required for the lineage commitment of pathogenic IL-17-producing T helper cells (TH-17 cells). Unexpectedly, here we found that stimulation of myelin-reactive T cells with TGF-β plus IL-6 completely abrogated their pathogenic function despite upregulation of IL-17 production. Cells stimulated with TGF-β plus IL-6 were present in the spleen as well as the central nervous system, but they failed to upregulate the proinflammatory chemokines crucial for central nervous system inflammation. In addition, these cells produced IL-10, which has potent anti-inflammatory activities. In contrast, stimulation with IL-23 promoted expression of IL-17 and proinflammatory chemokines but not IL-10. Hence, TGF-β and IL-6 'drive' initial lineage commitment but also 'restrain' the pathogenic potential of TH-17 cells. Our findings suggest that full acquisition of pathogenic function by effector TH-17 cells is mediated by IL-23 rather than by TGF-β and IL-6.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-23 and/or TGF-β plus IL-6 enhances IL-17 production, but TGF-β plus IL-6 abrogates pathogenic function.
Figure 2: Phenotypic analysis of TH-17 cells stimulated with IL-23 or with TGF-β and IL-6.
Figure 3: In vivo fate of cells stimulated with IL-23 or with TGF-β and IL-6.
Figure 4: TGF-β plus IL-6 inhibit the production of proinflammatory chemokines by TH-17 cells.
Figure 5: TGF-β plus IL-6 promotes IL-10 production.
Figure 6: Production of IL-10 dependent on TGF-β and IL-6 mediates bystander suppression of pathogenic TH-17 cells.

Similar content being viewed by others

References

  1. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Murphy, C.A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. & Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Batten, M. et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat. Immunol. 7, 929–936 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Stumhofer, J.S. et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol. 7, 937–945 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Kleinschek, M.A. et al. IL-25 regulates Th17 function in autoimmune inflammation. J. Exp. Med. 204, 161–170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Veldhoen, M., Hocking, R.J., Flavell, R.A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151–1156 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Y., Hancock, W.W., Marks, R., Gonnella, P. & Weiner, H.L. Mechanisms of recovery from experimental autoimmune encephalomyelitis: T cell deletion and immune deviation in myelin basic protein T cell receptor transgenic mice. J. Neuroimmunol. 82, 149–159 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Kent, S.C. et al. Oral administration of myelin induces antigen-specific TGF-β1-secreting T cells in multiple sclerosis patients. Ann. NY Acad. Sci. 815, 412–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A. & Weiner, H.L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Racke, M.K. et al. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-β1. J. Immunol. 146, 3012–3017 (1991).

    CAS  PubMed  Google Scholar 

  20. Kuruvilla, A.P. et al. Protective effect of transforming growth factor β1 on experimental autoimmune diseases in mice. Proc. Natl. Acad. Sci. USA 88, 2918–2921 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Sutton, C., Brereton, C., Keogh, B., Mills, K.H. & Lavelle, E.C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Godiska, R., Chantry, D., Dietsch, G.N. & Gray, P.W. Chemokine expression in murine experimental allergic encephalomyelitis. J. Neuroimmunol. 58, 167–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, D.R., Wang, J., Kivisakk, P., Rollins, B.J. & Ransohoff, R.M. Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J. Exp. Med. 193, 713–726 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karpus, W.J. & Ransohoff, R.M. Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis. J. Immunol. 161, 2667–2671 (1998).

    CAS  PubMed  Google Scholar 

  30. Columba-Cabezas, S. et al. Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J. Neuroimmunol. 130, 10–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Anderson, C.F., Oukka, M., Kuchroo, V.J. & Sacks, D. CD4+CD25Foxp3 Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med. 204, 285–297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jankovic, D. et al. Conventional T-bet+Foxp3 Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J. Exp. Med. 204, 273–283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bettelli, E. et al. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol. 161, 3299–3306 (1998).

    CAS  PubMed  Google Scholar 

  34. Cua, D.J., Groux, H., Hinton, D.R., Stohlman, S.A. & Coffman, R.L. Transgenic interleukin 10 prevents induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 189, 1005–1010 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cua, D.J. & Kastelein, R.A. TGF-β, a 'double agent' in the immune pathology war. Nat. Immunol. 7, 557–559 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Kullberg, M.C. et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J. Exp. Med. 203, 2485–2494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hue, S. et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med. 203, 2473–2483 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uhlig, H.H. et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25, 309–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Willenborg, D.O., Fordham, S., Bernard, C.C., Cowden, W.B. & Ramshaw, I.A. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  PubMed  Google Scholar 

  40. Bailey, S.L., Schreiner, B., McMahon, E.J. & Miller, S.D. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ TH-17 cells in relapsing EAE. Nat. Immunol. 8, 172–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Vanderlugt, C.J. & Miller, S.D. Epitope spreading. Curr. Opin. Immunol. 8, 831–836 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leibundgut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol (2007).

  43. Marie, J.C., Letterio, J.J., Gavin, M. & Rudensky, A.Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fantini, M.C. et al. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25– T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172, 5149–5153 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, M.O., Wan, Y.Y. & Flavell, R.A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. McGeachy, M.J., Stephens, L.A. & Anderton, S.M. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol. 175, 3025–3032 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Baecher-Allan, C. & Hafler, D.A. Suppressor T cells in human diseases. J. Exp. Med. 200, 273–276 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Viglietta, V., Baecher-Allan, C., Weiner, H.L. & Hafler, D.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kukreja, A. et al. Multiple immuno-regulatory defects in type-1 diabetes. J. Clin. Invest. 109, 131–140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sakaguchi, S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Desai and S. Jungers for assistance with flow cytometry; J. Mattson for real-time PCR data; B. Joyce-Shaikh for technical assistance; and R. Kastelein for comments.

Author information

Authors and Affiliations

Authors

Contributions

M.J.M. designed and did all experiments and prepared the manuscript; K.S.B.-J. assisted with in vitro experiments; Y.C. and C.M.T. assisted with in vivo experiments; W.B. and T.M. did quantitative PCR analysis; and D.J.C. did cerebroventricular injections, supervised the studies and preparation of the manuscript.

Corresponding author

Correspondence to Daniel J Cua.

Ethics declarations

Competing interests

The authors are employed by or were previously employed by Schering-Plough Biopharma.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 412 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGeachy, M., Bak-Jensen, K., Chen, Y. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology. Nat Immunol 8, 1390–1397 (2007). https://doi.org/10.1038/ni1539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1539

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing