Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD99 plays a major role in the migration of monocytes through endothelial junctions

Abstract

CD99 is a heavily O-glycosylated 32-kD type I transmembrane protein that is expressed on most hematopoietic cells. We show here that CD99 is expressed on endothelial cells and is concentrated at the borders between confluent cells. We found that a monoclonal antibody to CD99, hec2, selectively inhibited diapedesis of monocytes across endothelial cells by >90%. Diapedesis involved the homophilic interaction of CD99 on monocytes with CD99 on endothelial junctions. CD99 functioned distally to the point at which platelet-endothelial cell adhesion molecule 1 (PECAM-1, also known as CD31), another adhesion molecule involved in transmigration, played its critical role. Confocal microscopy showed that anti–PECAM-1 arrested leukocytes on the apical surface of endothelium, whereas blocking CD99 arrested monocytes at a point where they were partially through the junction. Therefore, diapedesis, the forward migration of leukocytes through endothelial junctions, is regulated sequentially by two distinct molecules, PECAM-1 and CD99.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the hec2 antigen.
Figure 2: CD99 is recognized by hec2.
Figure 3: Anti-CD99 selectively blocks leukocyte transendothelial migration.
Figure 4: CD99 is required for transmigration across cytokine-activated endothelium.
Figure 5: Endothelial cells and monocytes use CD99 for transmigration.
Figure 6: Homophilic interactions drive CD99-dependent cell adhesion.
Figure 7: CD99 functions distal to PECAM-1 in transmigration.
Figure 8: Blocking CD99 arrests monocytes part way through the endothelial cell junction.

Similar content being viewed by others

References

  1. Butcher, E. C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    Article  CAS  Google Scholar 

  2. Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  3. Muller, W. A. in Inflammation: Basic principles and clinical correlates (eds Gallin, J. I. & Snyderman, R.) 585–592 (Lippincott Williams & Wilkins, Philadelphia, 1999).

    Google Scholar 

  4. Campbell, J. J. et al. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279, 381–384 (1998).

    Article  CAS  Google Scholar 

  5. Zimmerman, G. A., McIntyre, T. M., Mehra, M. & Prescott, S. M. Endothelial cell-associated platelet-activating factor: a novel mechanism for signaling inercellular adhesion. J. Cell. Biol. 110, 529–540 (1990).

    Article  CAS  Google Scholar 

  6. Muller, W. A., Weigl, S. A., Deng, X. & Phillips, D. M. PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med. 178, 449–460 (1993).

    Article  CAS  Google Scholar 

  7. Liao, F. et al. Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J. Exp. Med. 182, 1337–1343 (1995).

    Article  CAS  Google Scholar 

  8. Berman, M. E., Xie, Y. & Muller, W. A. Roles of platelet/endothelial cell adhesion molecule-1 (PECAM-1, PECAM-1) in natural killer cell transendothelial migration and β2 integrin activation. J. Immunol. 156, 1515–1524 (1996).

    CAS  PubMed  Google Scholar 

  9. Liao, F., Ali, J., Greene, T. & Muller, W. A. Soluble domain 1 of platelet-endothelial cell adhesion molecule (PECAM) is sufficient to block transendothelial migration in vitro and in vivo. J. Exp. Med. 185, 1349–1357 (1997).

    Article  CAS  Google Scholar 

  10. Bogen, S., Pak, J., Garifallou, M., Deng, X. & Muller, W. A. Monoclonal antibody to murine PECAM-1 [PECAM-1] blocks acute inflammation in vivo. J. Exp. Med. 179, 1059–1064 (1994).

    Article  CAS  Google Scholar 

  11. Christofidou-Solomidou, M., Nakada, M. T., Williams, J., Muller, W. A. & Delisser, H. M. Neutrophil platelet endothelial cell adhesion molecule-1 participates in neutrophil recruitment at inflammatory sites and is down-regulated after leukocyte extravasation. J. Immunol. 158, 4872–4878 (1997).

    CAS  PubMed  Google Scholar 

  12. Gumina, R. J. et al. Antibody to platelet/endothelial cell adhesion molecule-1 reduces myocardial infarct size in a rat model of ischemia-reperfusion injury. Circulation 94, 3327–3333 (1996).

    Article  CAS  Google Scholar 

  13. Vaporciyan, A. A. et al. Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 262, 1580–1582 (1993).

    Article  CAS  Google Scholar 

  14. Liao, F., Schenkel, A. R. & Muller, W. A. Transgenic mice expressing different levels of soluble platelet/endothelial cell adhesion molecule-IgG display distinct inflammatory phenotypes. J. Immunol. 163, 5640–5648 (1999).

    CAS  PubMed  Google Scholar 

  15. Duncan, G. S. et al. Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): PECAM-1-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J. Immunol. 162, 3022–3030 (1999).

    CAS  PubMed  Google Scholar 

  16. Bernard, A. in Leukocyte Typing VI. Proceedings of the VIth International Leukocyte Differentiation Antigen Workshop, Kobe, Japan, 1996 (ed. Kishimoto, T.) 75–77 (Garland Publishers, London, 1997).

    Google Scholar 

  17. Gelin, C. et al. The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. EMBO J. 8, 3253–3259 (1989).

    Article  CAS  Google Scholar 

  18. Bernard, G. et al. The E2 molecule (CD99) specifically triggers homotypic aggregation of CD4+ CD8+ thymocytes. J. Immunol. 154, 26–32 (1995).

    CAS  PubMed  Google Scholar 

  19. Choi, E. Y. et al. Engagement of CD99 induces up-regulation of TCR and MHC class I and II molecules on the surface of human thymocytes. J. Immunol. 161, 749–754 (1998).

    CAS  PubMed  Google Scholar 

  20. Bernard, G. et al. Apoptosis of immature thymocytes mediated by E2/CD99. J. Immunol. 158, 2543–2550 (1997).

    CAS  PubMed  Google Scholar 

  21. Hahn, J.-H. et al. CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. J. Immunol. 159, 2250–2258 (1997).

    CAS  PubMed  Google Scholar 

  22. Waclaveicek, M. et al. CD99 engagement on human peripheral blood T cells results in TCR/CD3-dependent cellular activation and allows for Th1-restricted cytokine production. J. Immunol. 161, 4671–4678 (1998).

    Google Scholar 

  23. Wingett, D., Forcier, K. & Nielson, C. P. A role for CD99 in T cell activation. Cell. Immunol. 193, 17–23 (1999).

    Article  CAS  Google Scholar 

  24. Bernard, G. et al. CD99 (E2) up-regulates α4β1-dependent T cell adhesion at inflamed vascular endothelium under flow conditions. Eur. J. Immunol. 30, 3061–3065 (2000).

    Article  CAS  Google Scholar 

  25. Muller, W. A., Ratti, C. M., McDonnell, S. L. & Cohn, Z. A. A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. J. Exp. Med. 170, 399–414 (1989).

    Article  CAS  Google Scholar 

  26. Newman, P. J. et al. PECAM-1 [PECAM-1] cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247, 1219–1222 (1990).

    Article  CAS  Google Scholar 

  27. Ali, J., Liao, F., Martens, E. & Muller, W. A. Vascular endothelial cadherin (VE-Cadherin): Cloning and role in endothelial cell-cell adhesion. Microcirculation 4, 267–277 (1997).

    Article  CAS  Google Scholar 

  28. Sobocka, M. B. et al. Cloning of the human platelet F11 receptor: a cell adhesion molecule member of the immunoglobulin superfamily involved in platelet aggregation. Blood 95, 2600–2609 (2000).

    CAS  PubMed  Google Scholar 

  29. Muller, W. A. & Weigl, S. Monocyte-selective transendothelial migration: Dissection of the binding and transmigration phases by an in vitro assay. J. Exp. Med. 176, 819–828 (1992).

    Article  CAS  Google Scholar 

  30. Murohara, T., Delyani, J. A., Albelda, S. M. & Lefer, A. M. Blockade of platelet endothelial cell adhesion molecule-1 protects against myocardial ischemia and reperfusion injury in cats. J. Immunol. 156, 3550–3557 (1996).

    CAS  PubMed  Google Scholar 

  31. Randolph, G. J. & Furie, M. B. A soluble gradient of endogenous monocyte chemoattractant protein-1 promotes the transendothelial migration of monocytes in vitro. J. Immunol. 155, 3610–3618 (1995).

    CAS  PubMed  Google Scholar 

  32. Nose, A., Tsuji, K. & Takeichi, M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61, 147–155 (1990).

    Article  CAS  Google Scholar 

  33. Nagafuchi, A. & Takeichi, M. Cell binding function of E-Cadherin is regulated by the cytoplasmic domain. EMBO J. 7, 3679–3684 (1988).

    Article  CAS  Google Scholar 

  34. Jaffe, S. H. et al. Differential effects of the cytoplasmic domains of cell adhesion molecules on cell aggregation and sorting-out. Proc. Natl Acad. Sci. USA 87, 3589–3593 (1990).

    Article  CAS  Google Scholar 

  35. Muller, W. A., Berman, M. E., Newman, P. J., Delisser, H. M. & Albelda, S. M. A heterophilic adhesion mechanism for platelet/endothelial cell adhesion molecule-1 [PECAM-1]. J. Exp. Med. 175, 1401–1404 (1992).

    Article  CAS  Google Scholar 

  36. Xie, Y. & Muller, W. A. Molecular cloning and adhesive properties of murine platelet/endothelial cell adhesion molecule-1. Proc. Natl Acad. Sci. USA 90, 5569–5573 (1993).

    Article  CAS  Google Scholar 

  37. Delisser, H. M. et al. Platelet/endothelial cell adhesion molecule-1 (PECAM-1)-mediated cellular aggregation involves cell surface glycosaminoglycans. J. Biol. Chem. 268, 16037–16046 (1993).

    CAS  PubMed  Google Scholar 

  38. Sun, J. et al. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) homophilic adhesion is mediated by immunoglobulin-like domains 1 and 2 and depends on the cytoplasmic domain and the level of surface expression. J. Biol. Chem. 271, 18561–18570 (1996).

    Article  CAS  Google Scholar 

  39. Banting, G. S., Pym, B., Darling, S. M. & Goodfellow, P. N. The MIC2 gene product: Epitope mapping and structural prediction analysis define an integral membrane protein. Mol. Immunol. 26, 181–188 (1989).

    Article  CAS  Google Scholar 

  40. Aubrit, F., Gelin, C., Pham, D., Raynal, B. & Bernard, A. The biochemical characterization of E2, a T cell surface molecule involved in rosettes. Eur. J. Immunol. 19, 1431–1436 (1989).

    Article  CAS  Google Scholar 

  41. Ellis, N. A. et al. PBDX is the XG blood group gene. Nature Genet. 8, 285–290 (1994).

    Article  CAS  Google Scholar 

  42. Ellis, N. A. et al. Cloning of PBDX, an MIC2-related gene that spans the pseudoautosomal boundary on chromosome Xp. Nature Genet. 6, 394–400 (1994).

    Article  CAS  Google Scholar 

  43. Alberti, I. et al. PKCα mediates modulation of T cell adhesion events under CD99 engagement. FASEB J. 15, A332. (2001)

  44. Smith, C. W. et al. Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro. J. Clin. Invest. 87, 609–618 (1991).

    Article  CAS  Google Scholar 

  45. Kitayama, J., Hidemura, A., Saito, H. & Nagawa, H. Shear stress affects migration behavior of polymorphonuclear cells arrested on endothelium. Cell. Immunol. 203, 39–46 (2000).

    Article  CAS  Google Scholar 

  46. Allport, J. R., Muller, W. A. & Luscinskas, F. W. Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J. Cell Biol. 148, 203–216 (2000).

    Article  CAS  Google Scholar 

  47. Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nature Immunol. 2, 515–522 (2001).

    Article  CAS  Google Scholar 

  48. Jaffe, E. A., Nachman, R. L., Becker, C. G. & Minick, C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745 (1973).

    Article  CAS  Google Scholar 

  49. Mishell, B. B. & Shiigi, S. M. Selected methods in cellular immunology (W. H. Freeman, San Francisco, 1980).

Download references

Acknowledgements

We thank K. Najid for technical assistance. Supported by NIH grants R01 HL64774 and HL46849 (to W. A. M.) and F32 HL10311 (to A. R. S.) and the Charles H. Revson Foundation (Z. M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Muller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenkel, A., Mamdouh, Z., Chen, X. et al. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 3, 143–150 (2002). https://doi.org/10.1038/ni749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing