Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hlx is induced by and genetically interacts with T-bet to promote heritable TH1 gene induction

Abstract

Type 1 helper T (TH1) cells are essential for cellular immunity, but their ontogeny, maturation and durability remain poorly understood. By constructing a dominant-negative form of T-bet, we were able to determine the role played by this lineage-inducing trans-activator in the establishment and maintenance of heritable TH1 gene expression. Optimal induction of interferon-γ (IFN-γ) expression required genetic interaction between T-bet and its target, the homeoprotein Hlx. In fully mature TH1 cells, reiteration of IFN-γ expression and stable chromatin remodeling became relatively independent of T-bet activity and coincided with demethylation of DNA. In contrast, some lineage attributes, such as expression of IL-12Rβ2 (interleukin 12 receptor β2), required ongoing T-bet activity in mature TH1 cells and their progeny. These findings suggest that heritable states of gene expression might be maintained by continued expression of the inducing factor or by a mechanism that confers a stable imprint of the induced state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of DN T-bet on IFN-γ expression during TH1 differentiation.
Figure 2: Effects of DN T-bet on the TH1 identity.
Figure 3: The role of T-bet in chromatin remodeling and its maintenance at the Ifng locus.
Figure 4: Hlx encodes a TH1-specific transcription factor.
Figure 5: Hlx is a genetic target of T-bet.
Figure 6: Hlx genetically interacts with T-bet to induce heritable TH1 gene expression.
Figure 7: Progressive demethylation of Ifng during TH1 maturation.

Similar content being viewed by others

References

  1. Glimcher, L.H. & Murphy, K.M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  2. Reiner, S.L. Helper T cell differentiation, inside and out. Curr. Opin. Immunol. 13, 351–355 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kurata, H., Lee, H.J., O'Garra, A. & Arai, N. Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity 11, 677–688 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kurt-Jones, E.A., Hamberg, S., Ohara, J., Paul, W.E. & Abbas, A.K. Heterogeneity of helper/inducer T lymphocytes. I. Lymphokine production and lymphokine responsiveness. J. Exp. Med. 166, 1774–1787 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Mullen, A.C. et al. Cell cycle controlling the silencing and functioning of mammalian activators. Curr. Biol. 11, 1695–1699 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Kennedy, M.K., Picha, K.S., Shanebeck, K.D., Anderson, D.M. & Grabstein, K.H. Interleukin-12 regulates the proliferation of Th1, but not Th2 or Th0, clones. Eur. J. Immunol. 24, 2271–2278 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Bird, J.J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Gett, A.V. & Hodgkin, P.D. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl. Acad. Sci. USA 95, 9488–9493 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med. 190, 1439–1450 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grogan, J.L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Tada, M. & Smith, J.C. T-targets: clues to understanding the functions of T-box proteins. Dev. Growth Differ. 43, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Szabo, S.J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Conlon, F.L., Sedgwick, S.G., Weston, K.M. & Smith, J.C. Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development 122, 2427–2435 (1996).

    CAS  PubMed  Google Scholar 

  17. Horb, M.E. & Thomsen, G.H. Tbx5 is essential for heart development. Development 126, 1739–1751 (1999).

    CAS  PubMed  Google Scholar 

  18. Kispert, A., Koschorz, B. & Herrmann, B.G. The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J. 14, 4763–4772 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gajewski, T.F., Joyce, J. & Fitch, F.W. Antiproliferative effect of IFN-γ in immune regulation. III. Differential selection of TH1 and TH2 murine helper T lymphocyte clones using recombinant IL-2 and recombinant IFN-γ. J. Immunol. 143, 15–22 (1989).

    CAS  PubMed  Google Scholar 

  20. Izon, D.J. et al. Notch1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength. Immunity 14, 253–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. DeKoter, R.P. & Singh, H. Regulation of B lymphocyte and macrophage development by graded expression of PU. 1. Science 288, 1439–1441 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Solomon, M.J. & Varshavsky, A. A nuclease-hypersensitive region forms de novo after chromosome replication. Mol. Cell. Biol. 7, 3822–3825 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wolffe, A.P. & Brown, D.D. DNA replication in vitro erases a Xenopus 5S RNA gene transcription complex. Cell 47, 217–227 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Lamolet, B. et al. A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell 104, 849–859 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, J. et al. Tbx19, a tissue-selective regulator of POMC gene expression. Proc. Natl. Acad. Sci. USA 98, 8674–8679 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hiroi, Y. et al. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nature Genet. 28, 276–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Bruneau, B.G. et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Lipshutz, R.J., Fodor, S.P., Gingeras, T.R. & Lockhart, D.J. High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Allen, J.D. et al. Novel murine homeo box gene on chromosome 1 expressed in specific hematopoietic lineages and during embryogenesis. Genes Dev. 5, 509–520 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Deguchi, Y. et al. Cloning of a human homeobox gene that resembles a diverged Drosophila homeobox gene and is expressed in activated lymphocytes. New Biol. 3, 353–363 (1991).

    CAS  PubMed  Google Scholar 

  32. Hentsch, B. et al. Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev. 10, 70–79 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Kaplan, M.H., Sun, Y.L., Hoey, T. & Grusby, M.J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity 14, 779–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Tanigaki, K. et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nature Immunol. 3, 443–450 (2002).

    Article  CAS  Google Scholar 

  36. Reimold, A.M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643–652 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Yang, J., Zhu, H., Murphy, T.L., Ouyang, W. & Murphy, K.M., IL-18-stimulated GADD45β required in cytokine-induced, but not TCR-induced, IFN-γ production. Nature Immunol. 2, 157–164 (2001).

    Article  CAS  Google Scholar 

  41. Lee, H.J. et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J. Exp. Med. 192, 105–115 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, D.H., Yang, L. & Ray, A. Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3. J. Immunol. 161, 3817–382 (1998).

    CAS  PubMed  Google Scholar 

  43. Cirillo, L.A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Lighvani, A.A. et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. USA 98, 15137–15142 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kozak, M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucl. Acids Res. 12, 857–872 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fitzpatrick, D.R. et al. Distinct methylation of the interferon γ (IFN-γ) and interleukin 3 (IL-3) genes in newly activated primary CD8+ T lymphocytes: regional IFN-γ promoter demethylation and mRNA expression are heritable in CD44highCD8+ T cells. J. Exp. Med. 188, 103–117 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Weiss for helpful discussion; W. Pear and B. Cobb for advice on retrovirus production; V. Amorosa, J. Hartman, E. L. Pearce, M. Kessler and A. Villarino for assistance; D. Kessler for the cDNA of Drosophila engrailed repression domain; and W. DeMuth for cell sorting. Supported by the NIH (AI42370 to SLR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Reiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullen, A., Hutchins, A., High, F. et al. Hlx is induced by and genetically interacts with T-bet to promote heritable TH1 gene induction. Nat Immunol 3, 652–658 (2002). https://doi.org/10.1038/ni807

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni807

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing