Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL

Abstract

Immunoglobulin (Ig) class-switch DNA recombination (CSR) is thought to be highly dependent upon engagement of CD40 on B cells by CD40 ligand on T cells. We show here that dendritic cells up-regulate BLyS and APRIL upon exposure to interferon-α, interferon-γ or CD40 ligand. In the presence of interleukin 10 (IL-10) or transforming growth factor-β, BLyS and APRIL induce CSR from Cμ to Cγ and/or Cα genes in B cells, whereas CSR to Cε requires IL-4. Secretion of class-switched antibodies requires additional stimulation by B cell antigen receptor engagement and IL-15. By eliciting CD40-independent Ig class switching and plasmacytoid differentiation, BLyS and APRIL critically link the innate and adaptive immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BLyS, APRIL, IL-4 and/or IL-10 induce CSR from Cμ to Cγ, Cα or Cε.
Figure 2: BLyS or APRIL and TGF-β induce CSR from Cμ to Cα.
Figure 3: CSR is induced by BLyS, APRIL or CD40L but not by TNF-α or LT-α.
Figure 4: BLyS or APRIL up-regulate multiple germline IH-CH and mature VHDH-CH transcripts.
Figure 5: BLyS or APRIL up-regulate both membrane-bound and secreted IgG and IgA.
Figure 6: Activated DCs induce CSR through BLyS and APRIL.
Figure 7: Activated monocytes induce CSR through BLyS and APRIL.
Figure 8: Activated DCs induce plasmacytoid differentiation through BLyS and APRIL.

Similar content being viewed by others

References

  1. Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 (Suppl.) 45–55 (2002).

    Article  Google Scholar 

  2. Stavnezer, J. Antibody class switching. Adv. Immunol. 61, 79–146 (1996).

    Article  CAS  Google Scholar 

  3. Papavasiliou, F.N. & Schatz, D.G. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109 (Suppl.) 35–44 (2002).

    Article  Google Scholar 

  4. Manis, J.P., Tian, M. & Alt, F.W. Mechanism and control of class-switch recombination. Trends Immunol. 23, 31–39 (2002).

    Article  CAS  Google Scholar 

  5. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  6. Okazaki, I., Kinoshita, K., Muramatsu, M., Yoshikawa, K. & Honjo, T. The AID enzyme induces class switch recombination in fibroblasts. Nature 416, 340–345 (2002).

    Article  CAS  Google Scholar 

  7. Durandy, A. & Honjo, T. Human genetic defects in class-switch recombination (hyper-IgM syndromes). Curr. Opin. Immunol. 13, 543–548 (2001).

    Article  CAS  Google Scholar 

  8. Mond, J.J., Lees, A. & Snapper, C.M. T cell-independent antigens type 2. Annu. Rev. Immunol. 13, 655–692 (1995).

    Article  CAS  Google Scholar 

  9. Szomolanyi-Tsuda, E. & Welsh, R.M. T-cell-independent antiviral antibody responses. Curr. Opin. Immunol. 10, 431–435 (1998).

    Article  CAS  Google Scholar 

  10. Cyster, J.G. B cells on the front line. Nature Immunol. 1, 9–10 (2000).

    Article  CAS  Google Scholar 

  11. Fagarasan, S. & Honjo, T. T-Independent immune response: new aspects of B cell biology. Science 290, 89–92 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  12. Fayette, J. et al. Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2. J. Exp. Med. 185, 1909–1918 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  13. Moore, P.A. et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285, 260–263 (1999).

    Article  CAS  Google Scholar 

  14. Schneider, P. et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189, 1747–1756 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  15. Yan, M. et al. Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nature Immunol. 1, 37–41 (2000).

    Article  CAS  Google Scholar 

  16. Thompson, J.S. et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J. Exp. Med. 192, 129–135 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  17. Gross, J.A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    Article  CAS  Google Scholar 

  18. Gross, J.A. et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity 15, 289–302 (2001).

    Article  CAS  Google Scholar 

  19. Thompson, J.S. et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  20. Hahne, M. et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J. Exp. Med. 188, 1185–1190 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  21. Rennert, P. et al. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J. Exp. Med. 192, 1677–1684 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  22. Do, R.K. et al. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J. Exp. Med. 192, 953–964 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  23. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 5, 423–431 (1994).

    Article  Google Scholar 

  24. Renshaw, B.R. et al. Humoral immune responses in CD40 ligand-deficient mice. J. Exp. Med. 180, 1889–1900 (1994).

    Article  CAS  Google Scholar 

  25. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–4 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  26. Yu, G. et al. APRIL and TALL-I and receptors BCMA and TACI: system for regulating humoral immunity. Nature Immunol. 1, 252–256 (2000).

    Article  CAS  Google Scholar 

  27. von Bulow, G. U., van Deursen, J. M. & Bram, R. J. Regulation of the T-independent humoral response by TACI. Immunity 14, 573–582 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  28. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  29. Stein, J.V. et al. APRIL modulates B and T cell immunity. J. Clin. Invest. 109, 1587–1598 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  30. Kinoshita, K., Harigai, M., Fagarasan, S., Muramatsu, M. & Honjo, T. A hallmark of active class switch recombination: transcripts directed by I promoters on looped-out circular DNAs. Proc. Natl. Acad. Sci. USA 98, 12620–12623 (2001).

    Article  CAS  Google Scholar 

  31. Cerutti, A. et al. CD40 ligand and appropriate cytokines induce switching to IgG, IgA, and IgE and coordinated germinal center and plasmacytoid phenotypic differentiation in a human monoclonal IgM+IgD+ B cell line. J. Immunol. 160, 2145–2157 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsumoto, M. et al. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271, 1289–1291 (1996).

    Article  CAS  Google Scholar 

  33. Cerutti, A. et al. CD30 is a CD40-inducible molecule that negatively regulates CD40-mediated immunoglobulin class switching in non-antigen-selected human B cells. Immunity 9, 247–256 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  34. de Vinuesa, C. G. et al. Germinal centers without T cells. J. Exp. Med. 191, 485–494 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  35. Nardelli, B. et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97, 198–204 (2001).

    Article  CAS  Google Scholar 

  36. Arpin, C. et al. Generation of memory B cells and plasma cells in vitro. Science 268, 720–722 (1995).

    Article  CAS  Google Scholar 

  37. Armitage, R.J., Macduff, B.M., Eisenman, J., Paxton, R. & Grabstein, K.H. IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J. Immunol. 154, 483–490 (1995).

    CAS  PubMed  Google Scholar 

  38. Le Bon, A. et al. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14, 461–470 (2001).

    Article  CAS  Google Scholar 

  39. Blanco, P., Palucka, A.K., Gill, M., Pascual, V. & Banchereau, J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science 294, 1540–1543 (2001).

    Article  CAS  Google Scholar 

  40. Siegal, F.P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  41. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  42. Lanzavecchia, A. & Sallusto, F. Regulation of T cell immunity by dendritic cells. Cell 106, 263–266 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  43. Macpherson, A.J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  Google Scholar 

  44. Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K. & Honjo, T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413, 639–643 (2001).

    Article  CAS  Google Scholar 

  45. Life, P. et al. T cell clones from an X-linked hyper-immunoglobulin (IgM) patient induce IgE synthesis in vitro despite expression of nonfunctional CD40 ligand. J. Exp. Med. 180, 1775–1784 (1994).

    Article  CAS  PubMed Central  Google Scholar 

  46. Macpherson, A.J. et al. IgA production without μ or δ chain expression in developing B cells. Nature Immunol. 2, 625–631 (2001).

    Article  CAS  Google Scholar 

  47. von Bulow, G. U. & Bram, R. J. NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily. Science 278, 138–141 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  48. Xia, X.Z. et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J. Exp. Med. 192, 137–143 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  49. Cerutti, A. et al. Dysregulation of CD30+ T cells by leukemia impairs isotype switching in normal B cells. Nature Immunol. 2, 150–156 (2001).

    Article  CAS  Google Scholar 

  50. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. S. Picha (Immunex Corp.) for recombinant soluble CD40L and S. Narula (Schering-Plough) for IL-4 and IL-10. Supported by a New Investigator Grant from The Leukemia Research Foundation (to A. C.), research grants from The SLE Foundation (to A. C. and P. C.) and grants from the National Institutes of Health AR 47872 (to A. C.), AR 40908 and AI 45011 (to P. C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cerutti.

Ethics declarations

Competing interests

B. N. and D. M. H. are employed by Human Genome Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litinskiy, M., Nardelli, B., Hilbert, D. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3, 822–829 (2002). https://doi.org/10.1038/ni829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni829

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing