Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity

Abstract

Caspases are important for apoptosis but are also involved in mammalian cell survival and cell division. Here we report that caspase-3 is a negative regulator of B cell cycling. Mice deficient in caspase-3 (Casp3−/− mice) have increased numbers of splenic B cells that show normal apoptosis but enhanced proliferation in vivo and hyperproliferation after mitogenic stimulation in vitro. Cdkn1a encodes p21 (also called Waf1 or Cip1), a cyclin-dependent kinase (CDK) inhibitor. Although expression of p21 was increased, CDK activities and proliferating cell nuclear antigen (PCNA) were increased in Casp3−/− B cells. Using Casp3−/−Cdkn1a−/− mice, we show that the hyperproliferation of Casp3−/− B cells is abolished when Cdkn1a is also deleted. Our genetic and biochemical data demonstrate that caspase-3 is essential in the regulation of B cell homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellularity and proliferation of splenic and bone marrow B cells.
Figure 2: Increased proliferation of Casp3−/− B cells in the absence of a defect in cell death.
Figure 3: Increased cell cycling in Casp3−/− B cells.
Figure 4: Altered expression of cell cycle proteins in the absence of caspase-3.
Figure 5: Abolition of hyperproliferation of Casp3−/− B cells in the absence of p21.

Similar content being viewed by others

References

  1. Nicholson, D.W. & Thornberry, N.A. Caspases: killer proteases. Trends Biochem. Sci. 22, 299–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Green, D.R. Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1–4 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Hengartner, M.O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Woo, M., Hakem, R. & Mak, T.W. Executionary pathway for apoptosis: lessons from mutant mice. Cell Res. 10, 267–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459–470 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Fischer, U., Janicke, R.U. & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 10, 76–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Stroh, C. & Schulze-Osthoff, K. Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Differ. 5, 997–1000 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Widmann, C., Gibson, S. & Johnson, G.L. Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J. Biol. Chem. 273, 7141–7147 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Ranger, A.M., Malynn, B.A. & Korsmeyer, S.J. Mouse models of cell death. Nat. Genet. 28, 113–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Vaux, D.L. & Korsmeyer, S.J. Cell death in development. Cell 96, 245–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Alam, A., Cohen, L.Y., Aouad, S. & Sekaly, R.P. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med. 190, 1879–1890 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kennedy, N.J., Kataoka, T., Tschopp, J. & Budd, R.C. Caspase activation is required for T cell proliferation. J. Exp. Med. 190, 1891–1896 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chau, B.N. et al. Signal-dependent protection from apoptosis in mice expressing caspase-resistant Rb. Nat. Cell. Biol. 4, 757–765 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Sherr, C.J. & Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Gu, Y., Turck, C.W. & Morgan, D.O. Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366, 707–710 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K. & Elledge, S.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. el-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Waga, S., Hannon, G.J., Beach, D. & Stillman, B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574–578 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Waseem, N.H., Labib, K., Nurse, P. & Lane, D.P. Isolation and analysis of the fission yeast gene encoding polymerase δ accessory protein PCNA. EMBO J. 11, 5111–5120 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hengst, L., Gopfert, U., Lashuel, H.A. & Reed, S.I. Complete inhibition of Cdk/cyclin by one molecule of p21Cip1. Genes Dev. 12, 3882–3888 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, H., Hannon, G.J. & Beach, D. p21-containing cyclin kinases exist in both active and inactive states. Genes Dev. 8, 1750–1758 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. LaBaer, J. et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11, 847–862 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Barboule, N., Baldin, V., Jozan, S., Vidal S. & Valette, A. Increased level of p21 in human ovarian tumors is associated with increased expression of cdk2, cyclin A and PCNA. Int. J. Cancer 76, 891–896 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Erber, R. et al. Aberrant p21CIP1/WAF1 protein accumulation in head-and-neck cancer. Int. J. Cancer 74, 383–389 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Lipponen, P., Aaltomaa, S., Eskelinen, M., Ala-Opas, M. & Kosma, V.M. Expression of p21waf1/cip1 protein in transitional cell bladder tumours and its prognostic value. Eur. Urol. 34, 237–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Li, K.K. et al. Activation of cyclin-dependent kinases CDC2 and CDK2 in hepato- cellular carcinoma. Liver 22, 259–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Woo, M. et al. Essential contribution of caspase 3/CPP32 to apoptosis and its assoc-iated nuclear changes. Genes Dev. 12, 806–819 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fulcher, D. & Wong, S. Carboxyfluorescein succinimidyl ester-based proliferative assays for assessment of T cell function in the diagnostic laboratory. Immunol. Cell Biol. 77, 559–564 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Gervais, J.L., Seth, P. & Zhang, H. Cleavage of CDK inhibitor p21Cip1/Waf1 by caspases is an early event during DNA damage-induced apoptosis. J. Biol. Chem. 273, 19207–19212 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Loubat, A. et al. Evidence for a p23 caspase-cleaved form of p27KIP1 involved in G1 growth arrest. Oncogene 18, 3324–3333 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P.C. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 25, 675–684 (1995).

    Article  Google Scholar 

  32. Balomenos, D. et al. The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nat. Med. 6, 171–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Varfolomeev, E.E. et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Salmena, L. et al. Essential role for caspase 8 in T-cell homeostasis and T-cell- mediated immunity. Genes Dev. 17, 883–895 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chun, H.J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Park, J.A., Kim, K.W., Kim, S.I. & Lee, S.K. Caspase 3 specifically cleaves p21WAF1/CIP1 in the earlier stage of apoptosis in SK-HEP-1 human hepatoma cells. Eur. J. Biochem. 257, 242–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Cayrol, C. & Ducommun, B. Interaction with cyclin-dependent kinases and PCNA modulates proteasome-dependent degradation of p21. Oncogene 17, 2437–2444 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Kincade, P.W., Lee, G., Watanabe, S. & Scheid, M.P. Antigens displayed on murine B lymphocyte precursors. J. Immunol. 127, 2262–2268 (1981)

    CAS  PubMed  Google Scholar 

  41. Ray, R.J. et al. Stromal cell independent maturation of IL-7 responsive pro-B cells. J. Immunol. 160, 5886–5897 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Saunders for scientific editing and M. Eweida for technical assistance. Supported by Canadian Institutes of Health Research (to M.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tak W Mak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, M., Hakem, R., Furlonger, C. et al. Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat Immunol 4, 1016–1022 (2003). https://doi.org/10.1038/ni976

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni976

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing