Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures

Abstract

Brain inflammation is a major factor in epilepsy, but the impact of specific inflammatory mediators on neuronal excitability is incompletely understood. Using models of acute and chronic seizures in C57BL/6 mice, we discovered a proconvulsant pathway involving high-mobility group box-1 (HMGB1) release from neurons and glia and its interaction with Toll-like receptor 4 (TLR4), a key receptor of innate immunity. Antagonists of HMGB1 and TLR4 retard seizure precipitation and decrease acute and chronic seizure recurrence. TLR4-defective C3H/HeJ mice are resistant to kainate-induced seizures. The proconvulsant effects of HMGB1, like those of interleukin-1β (IL-1β), are partly mediated by ifenprodil-sensitive N-methyl-d-aspartate (NMDA) receptors. Increased expression of HMGB1 and TLR4 in human epileptogenic tissue, like that observed in the mouse model of chronic seizures, suggests a role for the HMGB1-TLR4 axis in human epilepsy. Thus, HMGB1-TLR4 signaling may contribute to generating and perpetuating seizures in humans and might be targeted to attain anticonvulsant effects in epilepsies that are currently resistant to drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HMGB1 and TLR4 immunoreactivity in the CA1 pyramidal layer of hippocampi of kainic acid–injected C57BL/6 mice.
Figure 2: HMGB1 and TLR4 immunoreactivity in the hippocampi of control subjects and subjects with TLE-HS.
Figure 3: Dose-dependent proconvulsant effect of HMGB1 in wild-type mice and absence of HMGB1 effect in Tlr4Lps-d mice.
Figure 4: Anticonvulsant effects of BoxA, Lps-Rs and Cyp in acute seizure models.
Figure 5: Anticonvulsant effects of BoxA and Lps-Rs in the chronic seizure model.
Figure 6: Effect of ifenprodil on acute and chronic seizures.

Similar content being viewed by others

References

  1. Hauser, W.A., Annegers, J.F. & Kurland, L.T. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 34, 453–468 (1993).

    Article  CAS  Google Scholar 

  2. Perucca, E., French, J. & Bialer, M. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol. 6, 793–804 (2007).

    Article  CAS  Google Scholar 

  3. Vezzani, A. & Granata, T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46, 1724–1743 (2005).

    Article  CAS  Google Scholar 

  4. Pitkänen, A. & Sutula, T.P. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 1, 173–181 (2002).

    Article  Google Scholar 

  5. Bartfai, T. et al. Interleukin-1 system in CNS stress: seizures, fever and neurotrauma. Ann. NY Acad. Sci. 1113, 173–177 (2007).

    Article  CAS  Google Scholar 

  6. Sheng, J.G., Boop, F.A., Mrak, R.E. & Griffin, W.S. Increased neuronal β-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-1α immunoreactivity. J. Neurochem. 63, 1872–1879 (1994).

    Article  CAS  Google Scholar 

  7. Crespel, A. et al. Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Res. 952, 159–169 (2002).

    Article  CAS  Google Scholar 

  8. Ravizza, T. et al. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol. Dis. 29, 142–160 (2008).

    Article  CAS  Google Scholar 

  9. Ravizza, T. et al. The IL-1β system in epilepsy-associated malformations of cortical development. Neurobiol. Dis. 24, 128–143 (2006).

    Article  CAS  Google Scholar 

  10. Boer, K. et al. Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Epilepsy Res. 78, 7–21 (2008).

    Article  CAS  Google Scholar 

  11. Vezzani, A., Balosso, S. & Ravizza, T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav. Immun. 22, 797–803 (2008).

    Article  CAS  Google Scholar 

  12. Vezzani, A. et al. Interleukin-1β immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J. Neurosci. 19, 5054–5065 (1999).

    Article  CAS  Google Scholar 

  13. De Simoni, M.G. et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur. J. Neurosci. 12, 2623–2633 (2000).

    Article  CAS  Google Scholar 

  14. Ravizza, T. et al. Interleukin converting enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1β production. Neurobiol. Dis. 31, 327–333 (2008).

    Article  CAS  Google Scholar 

  15. Viviani, B. et al. Interleukin-1β enhances NMDA receptor–mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 23, 8692–8700 (2003).

    Article  CAS  Google Scholar 

  16. Balosso, S. et al. A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1β. Brain 131, 3256–3265 (2008).

    Article  Google Scholar 

  17. Kawai, T. & Akira, S. Signaling to NF-κB by Toll-like receptors. Trends Mol. Med. 13, 460–469 (2007).

    Article  CAS  Google Scholar 

  18. Chakravarty, S. & Herkenham, M. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J. Neurosci. 25, 1788–1796 (2005).

    Article  CAS  Google Scholar 

  19. Sayyah, M., Javad-Pour, M. & Ghazi-Khansari, M. The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors: nitric oxide and prostaglandins. Neuroscience 122, 1073–1080 (2003).

    Article  CAS  Google Scholar 

  20. Galic, M.A. et al. Postnatal inflammation increases seizure susceptibility in adult rats. J. Neurosci. 28, 6904–6913 (2008).

    Article  CAS  Google Scholar 

  21. Bianchi, M.E. & Manfredi, A.A. Immunology. Dangers in and out. Science 323, 1683–1684 (2009).

    Article  CAS  Google Scholar 

  22. Scaffidi, P., Misteli, T. & Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  Google Scholar 

  23. Müller, S., Ronfani, L. & Bianchi, M.E. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J. Intern. Med. 255, 332–343 (2004).

    Article  Google Scholar 

  24. Bonaldi, T. et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22, 5551–5560 (2003).

    Article  CAS  Google Scholar 

  25. Park, J.S. et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem. 279, 7370–7377 (2004).

    Article  CAS  Google Scholar 

  26. Apetoh, L. et al. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  Google Scholar 

  27. Ravizza, T. et al. Inactivation of caspase-1 in rodent brain: a novel anticonvulsive strategy. Epilepsia 47, 1160–1168 (2006).

    Article  CAS  Google Scholar 

  28. Vezzani, A. et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc. Natl. Acad. Sci. USA 97, 11534–11539 (2000).

    Article  CAS  Google Scholar 

  29. Riban, V. et al. Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 112, 101–111 (2002).

    Article  CAS  Google Scholar 

  30. Bouilleret, V. et al. Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89, 717–729 (1999).

    Article  CAS  Google Scholar 

  31. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  32. Trisciuoglio, L. & Bianchi, M.E. Several nuclear events during apoptosis depend on caspase-3 activation but do not constitute a common pathway. PLoS One 4, e6234 (2009).

    Article  Google Scholar 

  33. Yu, S.W. et al. Mediation of poly(ADP-ribose) polymerase-1–dependent cell death by apoptosis-inducing factor. Science 297, 259–263 (2002).

    Article  CAS  Google Scholar 

  34. Yang, H. et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. USA 101, 296–301 (2004).

    Article  CAS  Google Scholar 

  35. Sitia, G., Iannacone, M., Muller, S., Bianchi, M.E. & Guidotti, L.G. Treatment with HMGB1 inhibitors diminishes CTL-induced liver disease in HBV transgenic mice. J. Leukoc. Biol. 81, 100–107 (2007).

    Article  CAS  Google Scholar 

  36. Muhammad, S. et al. The HMGB1 receptor RAGE mediates ischemic brain damage. J. Neurosci. 28, 12023–12031 (2008).

    Article  CAS  Google Scholar 

  37. Kutuzova, G.D., Albrecht, R.M., Erickson, C.M. & Qureshi, N. Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells. J. Immunol. 167, 482–489 (2001).

    Article  CAS  Google Scholar 

  38. Macagno, A. et al. A cyanobacterial LPS antagonist prevents endotoxin shock and blocks sustained TLR4 stimulation required for cytokine expression. J. Exp. Med. 203, 1481–1492 (2006).

    Article  CAS  Google Scholar 

  39. Chenard, B.L. & Menniti, F.S. Antagonists selective for NMDA receptors containing the NR2B subunit. Curr. Pharm. Des. 5, 381–404 (1999).

    CAS  PubMed  Google Scholar 

  40. Ebert, U., Wlaz, P. & Loscher, W. Anticonvulsant effects by combined treatment with a glycineB receptor antagonist and a polyamine site antagonist in amygdala-kindled rats. Eur. J. Pharmacol. 322, 179–184 (1997).

    Article  CAS  Google Scholar 

  41. Yourick, D.L., Repasi, R.T., Rittase, W.B., Staten, L.D. & Meyerhoff, J.L. Ifenprodil and arcaine alter amygdala-kindling development. Eur. J. Pharmacol. 371, 147–152 (1999).

    Article  CAS  Google Scholar 

  42. De Sarro, G.B., Bagetta, G., Spagnolo, C. & Nistico, G. Antagonists of N-methyl-d-aspartate receptors block seizures induced by putrescine in the deep prepiriform cortex. Neuropharmacology 32, 43–50 (1993).

    Article  CAS  Google Scholar 

  43. Lee, M.S. & Kim, Y.J. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem. 76, 447–480 (2007).

    Article  CAS  Google Scholar 

  44. Rodgers, K.M. et al. The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 132, 2478–2486 (2009).

    Article  Google Scholar 

  45. Singh, G., Prabhakar, S. & Modi, M. Central nervous system infections and epilepsy. Epilepsia 49 Suppl 6, 1 (2008).

    Article  Google Scholar 

  46. Prince, D.A. et al. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia 50 Suppl 2, 30–40 (2009).

    Article  Google Scholar 

  47. Yu, X.M., Askalan, R., Keil, G.J. II & Salter, M.W. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275, 674–678 (1997).

    Article  CAS  Google Scholar 

  48. Tsung, A. et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J. Exp. Med. 204, 2913–2923 (2007).

    Article  CAS  Google Scholar 

  49. Andrassy, M. et al. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 117, 3216–3226 (2008).

    Article  CAS  Google Scholar 

  50. Zhao, M., Ma, H., Suh, M. & Schwartz, T.H. Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex. J. Neurosci. 29, 2814–2823 (2009).

    Article  CAS  Google Scholar 

  51. Ishida, I. et al. Hypoxia diminishes Toll-like receptor 4 expression through reactive oxygen species generated by mitochondria in endothelial cells. J. Immunol. 169, 2069–2075 (2002).

    Article  CAS  Google Scholar 

  52. Yang, H., Wang, H., Czura, C.J. & Tracey, K.J. HMGB1 as a cytokine and therapeutic target. J. Endotoxin Res. 8, 469–472 (2002).

    Article  CAS  Google Scholar 

  53. Kralic, J.E., Ledergerber, D.A. & Fritschy, J.M. Disruption of the neurogenic potential of the dentate gyrus in a mouse model of temporal lobe epilepsy with focal seizures. Eur. J. Neurosci. 22, 1916–1927 (2005).

    Article  Google Scholar 

  54. Suzuki, F. et al. Glutamate receptor antagonists and benzodiazepine inhibit the progression of granule cell dispersion in a mouse model of mesial temporal lobe epilepsy. Epilepsia 46, 193–202 (2005).

    Article  Google Scholar 

  55. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates. (Academic Press, San Diego, 1997).

Download references

Acknowledgements

This work was supported by a CARIPLO Foundation grant (A.V., M.E.B. and C.R.), by Parents Against Childhood Epilepsy (A.V.), Associazione Italiana Contro l'Epilessia (T.R.), EU FP6 project EPICURE (LSH-CT-2006-037315) (A.V.), EU FP7 project NeuroGlia (No. 202167) and National Epilepsy Fund (NEF 09-05) (E.A.) and a grant from Regione Lombardia to HMGBiotech. J.L. is a recipient of an EU fellowship in the International Graduate Programme in Molecular Medicine training program. We acknowledge F. De Ceglie for technical support in photograph preparation.

Author information

Authors and Affiliations

Authors

Contributions

M. Maroso and S.B. conducted the pharmacological studies in the experimental models of seizures and performed the analysis of data; T.R. conducted the immunohistochemical analysis in the experimental models and analyzed the data; J.L. performed the western blot analyses and in vitro experiments; E.A. and A.M.I. conducted the immunohistochemical studies in human tissues and data analysis; C.R. and M. Molteni characterized and provided the TLR4 antagonists used in the pharmacological experiments; M.C. produced HMGB1 and BoxA; A.A.M. contributed experimental suggestions and participated in manuscript editing; M.E.B. together with A.V. supervised all phases of the project and wrote the manuscript.

Corresponding author

Correspondence to Annamaria Vezzani.

Ethics declarations

Competing interests

Declaration: M.M. is employed by and has personal financial interests in Bluegreen Biotech. M.E.B. is founder and part-owner of HMGBiotech, a biotech that sells products and idea based on the functions of HMGB proteins. M.C. is an employee of HMGBiotech.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–7 (PDF 889 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maroso, M., Balosso, S., Ravizza, T. et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16, 413–419 (2010). https://doi.org/10.1038/nm.2127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing