Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection

Abstract

Sepsis is a systemic inflammatory condition following bacterial infection with a high mortality rate and limited therapeutic options1,2. Here we show that interleukin-33 (IL-33) reduces mortality in mice with experimental sepsis from cecal ligation and puncture (CLP). IL-33–treated mice developed increased neutrophil influx into the peritoneal cavity and more efficient bacterial clearance than untreated mice. IL-33 reduced the systemic but not the local proinflammatory response, and it did not induce a T helper type 1 (TH1) to TH2 shift. The chemokine receptor CXCR2 is crucial for recruitment of neutrophils from the circulation to the site of infection3. Activation of Toll-like receptors (TLRs) in neutrophils downregulates CXCR2 expression and impairs neutrophil migration4. We show here that IL-33 prevents the downregulation of CXCR2 and inhibition of chemotaxis induced by the activation of TLR4 in mouse and human neutrophils. Furthermore, we show that IL-33 reverses the TLR4-induced reduction of CXCR2 expression in neutrophils via the inhibition of expression of G protein–coupled receptor kinase-2 (GRK2), a serine-threonine protein kinase that induces internalization of chemokine receptors5,6. Finally, we find that individuals who did not recover from sepsis had significantly more soluble ST2 (sST2, the decoy receptor of IL-33) than those who did recover. Together, our results indicate a previously undescribed mechanism of action of IL-33 and suggest a therapeutic potential of IL-33 in sepsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-33 attenuates sepsis and increases neutrophil influx to the site of infection and bacteria clearance.
Figure 2: IL-33 treatment reduces systemic proinflammatory cytokine, chemokine and lung myeloperoixdase (MPO) activity but increases CXCR2 expression on, and chemotaxis of, neutrophils.
Figure 3: IL-33 blocks the downregulation of CXCR2 and chemotaxis mediated by LPS in vitro.
Figure 4: IL-33 blocks the induction of GRK2 by LPS.

Similar content being viewed by others

References

  1. Hotchkiss, R.S. & Karl, I.E. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348, 138–150 (2003).

    Article  CAS  Google Scholar 

  2. Riedemann, N.C., Guo, R.F. & Ward, P.A. Novel strategies for the treatment of sepsis. Nat. Med. 9, 517–524 (2003).

    Article  CAS  Google Scholar 

  3. Olson, T.S. & Ley, K. Chemokines and chemokine receptors in leukocyte trafficking. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R7–R28 (2002).

    Article  CAS  Google Scholar 

  4. Alves-Filho, J.C. et al. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc. Natl. Acad. Sci. USA 106, 4018–4023 (2009).

    Article  CAS  Google Scholar 

  5. Vroon, A., Heijnen, C.J. & Kavelaars, A. GRKs and arrestins: regulators of migration and inflammation. J. Leukoc. Biol. 80, 1214–1221 (2006).

    Article  CAS  Google Scholar 

  6. Penela, P., Ribas, C. & Mayor, F. Jr. Mechanisms of regulation of the expression and function of G protein–coupled receptor kinases. Cell. Signal. 15, 973–981 (2003).

    Article  CAS  Google Scholar 

  7. Schmitz, J. et al. IL-33, an interleukin-1–like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2–associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  Google Scholar 

  8. Chackerian, A.A. et al. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J. Immunol. 179, 2551–2555 (2007).

    Article  CAS  Google Scholar 

  9. Ali, S. et al. IL-1 receptor accessory protein is essential for IL-33–induced activation of T lymphocytes and mast cells. Proc. Natl. Acad. Sci. USA 104, 18660–18665 (2007).

    Article  CAS  Google Scholar 

  10. Xu, D. et al. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J. Exp. Med. 187, 787–794 (1998).

    Article  CAS  Google Scholar 

  11. Moritz, D.R., Rodewald, H.R., Gheyselinck, J. & Klemenz, R. The IL-1 receptor-related T1 antigen is expressed on immature and mature mast cells and on fetal blood mast cell progenitors. J. Immunol. 161, 4866–4874 (1998).

    CAS  PubMed  Google Scholar 

  12. Coyle, A.J. et al. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2–mediated lung mucosal immune responses. J. Exp. Med. 190, 895–902 (1999).

    Article  CAS  Google Scholar 

  13. Löhning, M. et al. T1/ST2 is preferentially expressed on murine TH2 cells, independent of interleukin 4, interleukin 5 and interleukin 10, and important for TH2 effector function. Proc. Natl. Acad. Sci. USA 95, 6930–6935 (1998).

    Article  Google Scholar 

  14. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of Toll-like receptor–mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  15. Brint, E.K. et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat. Immunol. 5, 373–379 (2004).

    Article  CAS  Google Scholar 

  16. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  17. Plitas, G., Burt, B.M., Nguyen, H.M., Bamboat, Z.M. & DeMatteo, R.P. Toll-like receptor 9 inhibition reduces mortality in polymicrobial sepsis. J. Exp. Med. 205, 1277–1283 (2008).

    Article  CAS  Google Scholar 

  18. Alves-Filho, J.C., de Freitas, A., Russo, M. & Cunha, F.Q. Toll-like receptor 4 signaling leads to neutrophil migration impairment in polymicrobial sepsis. Crit. Care Med. 34, 461–470 (2006).

    Article  CAS  Google Scholar 

  19. Roger, T. et al. Protection from lethal Gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc. Natl. Acad. Sci. USA 106, 2348–2352 (2009).

    Article  CAS  Google Scholar 

  20. Spiller, S. et al. TLR4-induced IFN-γ production increases TLR2 sensitivity and drives Gram-negative sepsis in mice. J. Exp. Med. 205, 1747–1754 (2008).

    Article  CAS  Google Scholar 

  21. Angus, D.C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome and associated costs of care. Crit. Care Med. 29, 1303–1310 (2001).

    Article  CAS  Google Scholar 

  22. Hubbard, W.J. et al. Cecal ligation and puncture. Shock 24 Suppl 1, 52–57 (2005).

    Article  Google Scholar 

  23. Nathan, C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6, 173–182 (2006).

    Article  CAS  Google Scholar 

  24. Cavaillon, J.M., Adib-Conquy, M., Fitting, C., Adrie, C. & Payen, D. Cytokine cascade in sepsis. Scand. J. Infect. Dis. 35, 535–544 (2003).

    Article  CAS  Google Scholar 

  25. Brown, K.A. et al. Neutrophils in development of multiple organ failure in sepsis. Lancet 368, 157–169 (2006).

    Article  CAS  Google Scholar 

  26. Cummings, C.J. et al. Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J. Immunol. 162, 2341–2346 (1999).

    CAS  PubMed  Google Scholar 

  27. Rios-Santos, F. et al. Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase–derived nitric oxide. Am. J. Respir. Crit. Care Med. 175, 490–497 (2007).

    Article  CAS  Google Scholar 

  28. Suzukawa, M. et al. An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor. J. Immunol. 181, 5981–5989 (2008).

    Article  CAS  Google Scholar 

  29. Mueller, S.G., White, J.R., Schraw, W.P., Lam, V. & Richmond, A. Ligand-induced desensitization of the human CXC chemokine receptor-2 is modulated by multiple serine residues in the carboxyl-terminal domain of the receptor. J. Biol. Chem. 272, 8207–8214 (1997).

    Article  CAS  Google Scholar 

  30. Kurowska-Stolarska, M. et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol. 183, 6469–6477 (2009).

    Article  CAS  Google Scholar 

  31. Arraes, S.M. et al. Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood 108, 2906–2913 (2006).

    Article  CAS  Google Scholar 

  32. Loniewski, K., Shi, Y., Pestka, J. & Parameswaran, N. Toll-like receptors differentially regulate GPCR kinases and arrestins in primary macrophages. Mol. Immunol. 45, 2312–2322 (2008).

    Article  CAS  Google Scholar 

  33. Cherry, W.B., Yoon, J., Bartemes, K.R., Iijima, K. & Kita, H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J. Allergy Clin. Immunol. 121, 1484–1490 (2008).

    Article  CAS  Google Scholar 

  34. Xu, D. et al. IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc. Natl. Acad. Sci. USA 105, 10913–10918 (2008).

    Article  CAS  Google Scholar 

  35. Pushparaj, P.N. et al. The cytokine interleukin-33 mediates anaphylactic shock. Proc. Natl. Acad. Sci. USA 106, 9773–9778 (2009).

    Article  CAS  Google Scholar 

  36. Komai-Koma, M. et al. IL-33 is a chemoattractant for human TH2 cells. Eur. J. Immunol. 37, 2779–2786 (2007).

    Article  CAS  Google Scholar 

  37. Townsend, M.J., Fallon, P.G., Matthews, D.J., Jolin, H.E. & McKenzie, A.N. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J. Exp. Med. 191, 1069–1076 (2000).

    Article  CAS  Google Scholar 

  38. Manley, M.O., O'Riordan, M.A., Levine, A.D. & Latifi, S.Q. Interleukin 10 extends the effectiveness of standard therapy during late sepsis with serum interleukin 6 levels predicting outcome. Shock 23, 521–526 (2005).

    CAS  PubMed  Google Scholar 

  39. Levy, M.M. et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 31, 1250–1256 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust, the UK Medical Research Council, the UK and the EU (to F.Y.L.) and the State of São Paulo Research Foundation and National Research Council, Brazil (to F.Q.C.). Tlr4−/− and Myd88−/− mice were from S. Akira (University of Osaka).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernando Q Cunha or Foo Y Liew.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 848 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves-Filho, J., Sônego, F., Souto, F. et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med 16, 708–712 (2010). https://doi.org/10.1038/nm.2156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing