Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Resolving controversies on the path to Alzheimer's therapeutics

A Corrigendum to this article was published on 06 December 2011

A Corrigendum to this article was published on 07 November 2011

This article has been updated

Abstract

Alzheimer's disease constitutes a personal and societal tragedy of immense proportions. Since 1960, research in laboratories and clinics worldwide has elucidated many features of this insidious and ultimately fatal syndrome, and this progress has led to initial human trials of potentially disease-modifying agents. However, some of these agents have already failed. Gnawing controversies and important gaps in our knowledge seem to cast additional doubt on the ability of the field to move forward effectively. Here I discuss some of these looming concerns and offer possible explanations for the major trial failures that suggest they are not predictive of the future. Rigorous preclinical validation of mechanism-based therapeutic agents followed by meticulously designed trials that focus on the cardinal cognitive symptoms and their associated biomarkers in the mild or presymptomatic phases of Alzheimer's disease are likely to lead to success, perhaps in the not-too-distant future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approximate timeline of some principal discoveries in Alzheimer's disease research since 1960.
Figure 2: Intersecting disease-modifying agents for Alzheimer's disease with the course of the disease.

Similar content being viewed by others

Change history

  • 21 October 2011

     In the version of this article initially published, the name of the antibody bapineuzumab is incorrectly spelled as 'bapineuzimab' throughout the text. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Jack, C.R. Jr. et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pimplikar, S.W., Nixon, R.A., Robakis, N.K., Shen, J. & Tsai, L.H. Amyloid-independent mechanisms in Alzheimer's disease pathogenesis. J. Neurosci. 30, 14946–14954 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Tanzi, R.E. & Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Haass, C. & Selkoe, D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Holtzman, D.M., Morris, J.C. & Goate, A.M. Alzheimer's disease: the challenge of the second century. Sci. Transl. Med. 3, 77sr71 (2011).

    Google Scholar 

  7. Corder, E.H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Schmechel, D.E. et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 9649–9653 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rebeck, G.W., Reiter, J.S., Strickland, D.K. & Hyman, B.T. Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron 11, 575–580 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Holtzman, D.M. et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 97, 2892–2897 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koffie, R.M. et al. Oligomeric amyloid b associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl. Acad. Sci. USA 106, 4012–4017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knowles, R.B. et al. Plaque-induced neurite abnormalities: implications for disruption of neural networks in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 96, 5274–5279 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shankar, G.M. et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Castellano, J.M. et al. Human apoE isoforms differentially regulate brain amyloid-{b} peptide clearance. Sci. Transl. Med. 3, 89ra57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hyman, B.T. et al. Quantitative analysis of senile plaques in Alzheimer's disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome). Proc. Natl. Acad. Sci. USA 92, 3586–3590 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan, P. et al. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J. Neurosci. 29, 10706–10714 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lemere, C.A. et al. Sequence of deposition of heterogeneous amyloid β-peptides and Apo E in Down syndrome: Implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3, 16–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Puzzo, D. et al. Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J. Neurosci. 28, 14537–14545 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Sherrington, R. et al. Cloning of a novel gene bearing missense mutations in early onset familial Alzheimer disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Götz, J., Chen, F., van Dorpe, J. & Nitsch, R.M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ 42 fibrils. Science 293, 1491–1495 (2001).

    Article  PubMed  Google Scholar 

  24. Lewis, J. et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Roberson, E.D. et al. Reducing endogenous tau ameliorates amyloid b–induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ittner, L.M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. De Felice, F.G. et al. Alzheimer's disease-type neuronal tau hyperphosphorylation induced by A b oligomers. Neurobiol. Aging 29, 1334–1347 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Jin, M., Shepardson, N., Yang, T., Walsh, D. & Selkoe, D. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. USA 108, 5819–5824 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gozes, I. et al. Addressing Alzheimer's disease tangles: from NAP to AL-108. Curr. Alzheimer Res. 6, 455–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Golde, T.E., Schneider, L.S. & Koo, E.H. Anti-Aβ therapeutics in Alzheimer's disease: the need for a paradigm shift. Neuron 69, 203–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sperling, R.A. et al. Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 280–292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Oddo, S., Billings, L., Kesslak, J.P., Cribbs, D.H. & LaFerla, F.M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43, 321–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Salloway, S. et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73, 2061–2070 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faux, N.G. et al. PBT2 rapidly improves cognition in Alzheimer's disease: additional phase II analyses. J. Alzheimers Dis. 20, 509–516 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Rinne, J.O. et al. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 9, 363–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with Alzheimer's disease in an interrupted trial. Neurology 64, 1553–1562 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Serrano-Pozo, A. et al. Beneficial effect of human anti–amyloid-β active immunization on neurite morphology and tau pathology. Brain 133, 1312–1327 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D.J.S. is a founding scientist of Athena Neurosciences and a consultant to Elan plc. He is also a consultant to Johnson & Johnson in neuroscience.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selkoe, D. Resolving controversies on the path to Alzheimer's therapeutics. Nat Med 17, 1060–1065 (2011). https://doi.org/10.1038/nm.2460

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing