Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cells and the vasculature

Abstract

Unraveling the contribution of stem and progenitor cells to blood vessel formation and, reciprocally, the importance of blood vessels to the production and function of stem and progenitor cells, has been a major focus of vascular research over the last decade, but has spawned many controversies. Here I review how vascular stem and progenitor cells contribute both vascular and nonvascular cells during development and in disease, and how nonvascular stem and progenitor cells might contribute to vascular lineages. I also discuss the role of the vasculature in forming stem and progenitor cell niches. Finally, I highlight the potential relevance of these relationships to disease etiology and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed interactions of stem and progenitor cells with the vasculature.
Figure 2: Potential developmental relationships of hematopoietic and endothelial cells.

Similar content being viewed by others

References

  1. Carmeliet, P. & Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Psaltis, P.J., Harbuzariu, A., Delacroix, S., Holroyd, E. & Simari, R. Resident vascular progenitor cells—diverse origins, phenotype and function. J. Cardiovasc. Transl. Res. 4, 161–176 (2011).

    PubMed  Google Scholar 

  3. Hogan, K.A. & Bautch, V.L. Blood vessel patterning at the embryonic midline. Curr. Top. Dev. Biol. 62, 55–85 (2004).

    CAS  PubMed  Google Scholar 

  4. Majesky, M.W. Developmental basis of vascular smooth muscle diversity. Arterioscler. Thromb. Vasc. Biol. 27, 1248–1258 (2007).

    CAS  PubMed  Google Scholar 

  5. Gittenberger-de Groot, A.C., DeRuiter, M.C., Bergwerff, M. & Poelmann, R.E. Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler. Thromb. Vasc. Biol. 19, 1589–1594 (1999).

    CAS  PubMed  Google Scholar 

  6. Kirby, M.L. & Waldo, K.L. Neural crest and cardiovascular patterning. Circ. Res. 77, 211–215 (1995).

    CAS  PubMed  Google Scholar 

  7. Cleaver, O., Tonissen, K.F., Saha, M.S. & Krieg, P.A. Neovascularization of the Xenopus embryo. Dev. Dyn. 210, 66–77 (1997).

    CAS  PubMed  Google Scholar 

  8. Coultas, L., Chawengsaksophak, K. & Rossant, J. Endothelial cells and VEGF in vascular development. Nature 438, 937–945 (2005).

    CAS  PubMed  Google Scholar 

  9. Ambler, C.A., Nowicki, J.L., Burke, A.C. & Bautch, V.L. Assembly of trunk and limb blood vessels involves extensive migration and vasculogenesis of somite-derived angioblasts. Dev. Biol. 234, 352–364 (2001).

    CAS  PubMed  Google Scholar 

  10. Pardanaud, L. et al. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122, 1363–1371 (1996).

    CAS  PubMed  Google Scholar 

  11. James, J.M., Gewolb, C. & Bautch, V.L. Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube. Development 136, 833–841 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Kurz, H., Torsten, G., Eggli, P.S. & Christ, B. First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev. Biol. 173, 133–147 (1996).

    CAS  PubMed  Google Scholar 

  13. Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    CAS  PubMed  Google Scholar 

  14. Esner, M. et al. Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development 133, 737–749 (2006).

    CAS  PubMed  Google Scholar 

  15. Lagha, M. et al. Pax3:Foxc2 reciprocal repression in the somite modulates muscular versus vascular cell fate choice in multipotent progenitors. Dev. Cell 17, 892–899 (2009).

    CAS  PubMed  Google Scholar 

  16. Majesky, M.W., Dong, X.R., Regan, J. & Hoglund, V. Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ. Res. 108, 365–377 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Wasteson, P. et al. Developmental origin of smooth muscle cells in the descending aorta in mice. Development 135, 1823–1832 (2008).

    CAS  PubMed  Google Scholar 

  18. Bianco, P., Robey, P.G. & Simmons, P.J. Mesenchymal stem cells: revisiting history, concepts and assays. Cell Stem Cell 2, 313–319 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Park, C., Ma, Y.D. & Choi, K. Evidence for the hemangioblast. Exp. Hematol. 33, 965–970 (2005).

    CAS  PubMed  Google Scholar 

  20. Wu, S.M., Chien, K.R. & Mummery, C. Origins and fates of cardiovascular progenitor cells. Cell 132, 537–543 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. & Keller, G. A common precursor for hematopoietic and endothelial cells. Development 125, 725–732 (1998).

    CAS  PubMed  Google Scholar 

  22. Vogeli, K.M., Jin, S.-W., Martin, G.R. & Stainier, D.Y.R. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443, 337–339 (2006).

    CAS  PubMed  Google Scholar 

  23. Sabin, F.R. Studies on the origin of the blood vessels and of red blood corpuscles as seen in the living blastoderm of chick during the second day of incubation. Contrib. Embryol. Carnegie Inst. 9, 215–262 (1920).

    Google Scholar 

  24. Huber, T.L., Kouskoff, V., Joerg Fehling, H., Palis, J. & Keller, G. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432, 625–630 (2004).

    CAS  PubMed  Google Scholar 

  25. de Bruijn, M.F.T.R. et al. Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 16, 673–683 (2002).

    CAS  PubMed  Google Scholar 

  26. Bertrand, J.Y. & Traver, D. Hematopoietic cell development in the zebrafish embryo. Curr. Opin. Hematol. 16, 243–248 (2009).

    CAS  PubMed  Google Scholar 

  27. Bertrand, J.Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Boisset, J.-C. et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116–120 (2010).

    CAS  PubMed  Google Scholar 

  29. Eilken, H.M., Nishikawa, S.-I. & Schroeder, T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457, 896–900 (2009).

    CAS  PubMed  Google Scholar 

  30. Kissa, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115 (2010).

    CAS  PubMed  Google Scholar 

  31. Zovein, A.C. et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625–636 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Chen, M.J., Yokomizo, T., Zeigler, B.M., Dzierzak, E. & Speck, N.A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887–891 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Iacovino, M. et al. HoxA3 is an apical regulator of haemogenic endothelium. Nat. Cell Biol. 13, 72–78 (2011).

    CAS  PubMed  Google Scholar 

  34. Lancrin, C. et al. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457, 892–895 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Yamashita, J. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92–96 (2000).

    CAS  PubMed  Google Scholar 

  36. Bearzi, C. et al. Identification of a coronary vascular progenitor cell in the human heart. Proc. Natl. Acad. Sci. USA 106, 15885–15890 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bu, L. et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460, 113–117 (2009).

    CAS  PubMed  Google Scholar 

  38. Kattman, S.J., Huber, T.L. & Keller, G.M. Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial and vascular smooth muscle lineages. Dev. Cell 11, 723–732 (2006).

    CAS  PubMed  Google Scholar 

  39. Moretti, A. et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165 (2006).

    CAS  PubMed  Google Scholar 

  40. Corselli, M., Chen, C.-W., Crisan, M., Lazzari, L. & Peault, B. Perivascular ancestors of adult multipotent stem cells. Arterioscler. Thromb. Vasc. Biol. 30, 1104–1109 (2010).

    CAS  PubMed  Google Scholar 

  41. Dellavalle, A. et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 9, 255–267 (2007).

    CAS  PubMed  Google Scholar 

  42. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    CAS  PubMed  Google Scholar 

  43. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    CAS  PubMed  Google Scholar 

  44. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Traktuev, D.O. et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location and stabilize endothelial networks. Circ. Res. 102, 77–85 (2008).

    CAS  PubMed  Google Scholar 

  46. Feng, J., Mantesso, A., De Bari, C., Nishiyama, A. & Sharpe, P.T. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc. Natl. Acad. Sci. USA 108, 6503–6508 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Olson, L.E. & Soriano, P. PDGFRβ signaling regulates mural cell plasticity and inhibits fat development. Dev. Cell 20, 815–826 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    CAS  PubMed  Google Scholar 

  49. Gao, D. et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319, 195–198 (2008).

    CAS  PubMed  Google Scholar 

  50. Jujo, K., Ii, M. & Losordo, D.W. Endothelial progenitor cells in neovascularization of infarcted myocardium. J. Mol. Cell. Cardiol. 45, 530–544 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Kerbel, R.S. et al. Endothelial progenitor cells are cellular hubs essential for neoangiogenesis of certain aggressive adenocarcinomas and metastatic transition but not adenomas. Proc. Natl. Acad. Sci. USA 105, E54 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nolan, D.J. et al. Bone marrow–derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 21, 1546–1558 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Göthert, J.R. et al. Genetically tagging endothelial cells in vivo: bone marrow–derived cells do not contribute to tumor endothelium. Blood 104, 1769–1777 (2004).

    PubMed  Google Scholar 

  54. Purhonen, S. et al. Bone marrow–derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc. Natl. Acad. Sci. USA 105, 6620–6625 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. De Palma, M., Venneri, M.A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9, 789–795 (2003).

    CAS  PubMed  Google Scholar 

  56. Dudley, A.C. et al. Bone marrow is a reservoir for proangiogenic myelomonocytic cells but not endothelial cells in spontaneous tumors. Blood 116, 3367–3371 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Butler, J.M., Kobayashi, H. & Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer 10, 138–146 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Yoder, M.C. Is endothelium the origin of endothelial progenitor cells? Arterioscler. Thromb. Vasc. Biol. 30, 1094–1103 (2010).

    CAS  PubMed  Google Scholar 

  59. Ingram, D.A. et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104, 2752–2760 (2004).

    CAS  PubMed  Google Scholar 

  60. Yoder, M.C. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109, 1801–1809 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Au, P., Tam, J., Fukumura, D. & Jain, R.K. Bone marrow derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111, 4551–4558 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Melero-Martin, J.M. et al. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109, 4761–4768 (2007).

    CAS  PubMed  Google Scholar 

  63. Arciniegas, E., Frid, M.G., Douglas, I.S. & Stenmark, K.R. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L1–L8 (2007).

    CAS  PubMed  Google Scholar 

  64. Potenta, S., Zeisberg, E. & Kalluri, R. The role of endothelial-to-mesenchymal transition in cancer progression. Br. J. Cancer 99, 1375–1379 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Zeisberg, E.M., Potenta, S., Xie, L., Zeisberg, M. & Kalluri, R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67, 10123–10128 (2007).

    CAS  PubMed  Google Scholar 

  66. Zeisberg, E.M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

    CAS  PubMed  Google Scholar 

  67. Medici, D. et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat. Med. 16, 1400–1406 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Moore, K.A. & Lemischka, I.R. Stem cells and their niches. Science 311, 1880–1885 (2006).

    CAS  PubMed  Google Scholar 

  69. Bianco, P. Bone and the hematopoietic niche: a tale of two stem cells. Blood 117, 5281–5288 (2011).

    CAS  PubMed  Google Scholar 

  70. Dimmeler, S. Regulation of bone marrow–derived vascular progenitor cell mobilization and maintenance. Arterioscler. Thromb. Vasc. Biol. 30, 1088–1093 (2010).

    CAS  PubMed  Google Scholar 

  71. Goldberg, J.S. & Hirschi, K.K. Diverse roles of the vasculature within the neural stem cell niche. Regen. Med. 4, 879–897 (2009).

    PubMed  Google Scholar 

  72. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    CAS  PubMed  Google Scholar 

  73. Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kokovay, E. et al. Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 7, 163–173 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Gopinath, S.D. & Rando, T.A. Stem Cell Review Series: aging of the skeletal muscle stem cell niche. Aging Cell 7, 590–598 (2008).

    CAS  PubMed  Google Scholar 

  76. Tilki, D., Hohn, H.-P., Erg¸n, B., Rafii, S. & Ergun, S.l. Emerging biology of vascular wall progenitor cells in health and disease. Trends Mol. Med. 15, 501–509 (2009).

    CAS  PubMed  Google Scholar 

  77. Torsney, E. & Xu, Q. Resident vascular progenitor cells. J. Mol. Cell. Cardiol. 50, 304–311 (2011).

    CAS  PubMed  Google Scholar 

  78. Hu, Y. et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J. Clin. Invest. 113, 1258–1265 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Passman, J.N. et al. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc. Natl. Acad. Sci. USA 105, 9349–9354 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Campagnolo, P. et al. Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121, 1735–1745 (2010).

    PubMed Central  PubMed  Google Scholar 

  81. Zengin, E. et al. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133, 1543–1551 (2006).

    CAS  PubMed  Google Scholar 

  82. Gaengel, K., Genove, G., Armulik, A. & Betsholtz, C. Endothelial-mural signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 630–638 (2009).

    CAS  PubMed  Google Scholar 

  83. Hirschi, K.K., Rohovsky, S.A. & D'Amore, P.A. PDGF, TGF-β and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol. 141, 805–814 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Challen, G.A. & Little, M.H. A side order of stem cells: the SP phenotype. Stem Cells 24, 3–12 (2006).

    PubMed  Google Scholar 

  85. Xu, Q., Zhang, Z., Davison, F. & Hu, Y. Circulating progenitor cells regenerate endothelium of vein graft atherosclerosis, which is diminished in ApoE-deficient mice. Circ. Res. 93, e76–e86 (2003).

    PubMed  Google Scholar 

  86. Hagensen, M.K., Shim, J., Thim, T., Falk, E. & Bentzon, J.F. Circulating endothelial progenitor cells do not contribute to plaque endothelium in murine atherosclerosis. Circulation 121, 898–905 (2010).

    PubMed  Google Scholar 

  87. Daniel, J.-M. et al. Time-course analysis on the differentiation of bone marrow-derived progenitor cells into smooth muscle cells during neointima formation. Arterioscler. Thromb. Vasc. Biol. 30, 1890–1896 (2010).

    CAS  PubMed  Google Scholar 

  88. Boscolo, E. & Bischoff, J. Vasculogenesis in infantile hemangioma. Angiogenesis 12, 197–207 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Chiller, K.G., Passaro, D. & Frieden, I.J. Hemangiomas of infancy: clinical characteristics, morphologic subtypes, and their relationship to race, ethnicity and sex. Arch. Dermatol. 138, 1567–1576 (2002).

    PubMed  Google Scholar 

  90. Jinnin, M., Ishihara, T., Boye, E. & Olsen, B.R. Recent progress in studies of infantile hemangioma. J. Dermatol. 37, 283–298 (2010).

    PubMed  Google Scholar 

  91. Boye, E. et al. Clonality and altered behavior of endothelial cells from hemangiomas. J. Clin. Invest. 107, 745–752 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Walter, J.W. et al. Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes Chromosom. Cancer 33, 295–303 (2002).

    CAS  PubMed  Google Scholar 

  93. Khan, Z.A. et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J. Clin. Invest. 118, 2592–2599 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Jinnin, M. et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat. Med. 14, 1236–1246 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Boscolo, E. et al. JAGGED1 signaling regulates hemangioma stem cell-to-pericyte/vascular smooth muscle cell differentiation. Arterioscler. Thromb. Vasc. Biol. 31, 2181–2192 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Limaye, N., Boon, L.M. & Vikkula, M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum. Mol. Genet. 18, R65–R74 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Limaye, N. et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat. Genet. 41, 118–124 (2009).

    CAS  PubMed  Google Scholar 

  98. Raaijmakers, M.H.G.P. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Olive, M. et al. Cardiovascular pathology in hutchinson-gilford progeria: correlation with the vascular pathology of aging. Arterioscler. Thromb. Vasc. Biol. 30, 2301–2309 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to the many colleagues whose work could not be cited due to space constraints. I thank lab members and colleagues for fruitful discussions. I especially thank J. Bischoff, S.-W. Jin, M. Majesky and C. Patterson for thoughtful suggestions and critical comments on an early draft of the manuscript. This work was supported by grants from the US National Institutes of Health (HL43174 and HL86465) and an Innovation Award from the University of North Carolina Lineberger Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria L Bautch.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bautch, V. Stem cells and the vasculature. Nat Med 17, 1437–1443 (2011). https://doi.org/10.1038/nm.2539

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2539

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing