Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis

Abstract

Regulatory T (Treg) cells suppress autoimmune disease, and impaired Treg cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, Treg cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis–derived Treg cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired Treg cell function. Moreover, TNF-α–induced Treg cell dysfunction correlated with increased numbers of interleukin-17 (IL-17)+ and interferon-γ (IFN-γ)+CD4+ T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α–specific antibody restored Treg cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in Treg cells. Thus, TNF-α controls the balance between Treg cells and pathogenic TH17 and TH1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TNF-α in RA-SF impairs Treg cell function.
Figure 2: Decreased FOXP3 phosphorylation in Treg cells treated with TNF-α or RA-SF.
Figure 3: Phosphorylation of Ser418 modulates FOXP3 activity and Treg cell function.
Figure 4: TNF-α induces PP1 expression and activation in Treg cells.
Figure 5: Effect of PP1 on FOXP3 dephosphorylation and Treg cell function.
Figure 6: Restoration of Treg cell function in subjects with rheumatoid arthritis receiving TNF-α–specific antibody (infliximab) treatment.

Similar content being viewed by others

References

  1. Feldmann, M., Brennan, F.M. & Maini, R.N. Rheumatoid arthritis. Cell 85, 307–310 (1996).

    Article  CAS  Google Scholar 

  2. Brennan, F.M. & McInnes, I.B. Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Invest. 118, 3537–3545 (2008).

    Article  CAS  Google Scholar 

  3. Suryaprasad, A.G. & Prindiville, T. The biology of TNF blockade. Autoimmun. Rev. 2, 346–357 (2003).

    Article  CAS  Google Scholar 

  4. Ehrenstein, M.R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  Google Scholar 

  5. Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol. 2, 364–371 (2002).

    Article  CAS  Google Scholar 

  6. Ramesh, G. & Reeves, W.B. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 110, 835–842 (2002).

    Article  CAS  Google Scholar 

  7. Ali, M. et al. Rheumatoid arthritis synovial T cells regulate transcription of several genes associated with antigen-induced anergy. J. Clin. Invest. 107, 519–528 (2001).

    Article  CAS  Google Scholar 

  8. Puren, A.J., Fantuzzi, G., Gu, Y., Su, M.S. & Dinarello, C.A. Interleukin-18 (IFNγ-inducing factor) induces IL-8 and IL-1β via TNFα production from non-CD14+ human blood mononuclear cells. J. Clin. Invest. 101, 711–721 (1998).

    Article  CAS  Google Scholar 

  9. Popivanova, B.K. et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest. 118, 560–570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Burstein, E. & Fearon, E.R. Colitis and cancer: a tale of inflammatory cells and their cytokines. J. Clin. Invest. 118, 464–467 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wicovsky, A. et al. Tumor necrosis factor receptor-associated factor-1 enhances proinflammatory TNF receptor-2 signaling and modifies TNFR1-TNFR2 cooperation. Oncogene 28, 1769–1781 (2009).

    Article  CAS  Google Scholar 

  12. Shevach, E.M. Regulatory T cells in autoimmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    Article  CAS  Google Scholar 

  13. Costantino, C.M., Baecher-Allan, C. & Hafler, D.A. Multiple sclerosis and regulatory T cells. J. Clin. Immunol. 28, 697–706 (2008).

    Article  Google Scholar 

  14. Riley, J.L., June, C.H. & Blazar, B.R. Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity 30, 656–665 (2009).

    Article  CAS  Google Scholar 

  15. Shevach, E.M. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    Article  CAS  Google Scholar 

  16. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    Article  CAS  Google Scholar 

  17. Valencia, X. et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108, 253–261 (2006).

    Article  CAS  Google Scholar 

  18. Ranganathan, P. Pharmacogenomics of tumor necrosis factor antagonists in rheumatoid arthritis. Pharmacogenomics 6, 481–490 (2005).

    Article  CAS  Google Scholar 

  19. Rudensky, A.Y. Regulatory T cells and Foxp3. Immunol. Rev. 241, 260–268 (2011).

    Article  CAS  Google Scholar 

  20. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

    Article  CAS  Google Scholar 

  21. Wang, L., Tao, R. & Hancock, W.W. Using histone deacetylase inhibitors to enhance Foxp3+ regulatory T-cell function and induce allograft tolerance. Immunol. Cell Biol. 87, 195–202 (2009).

    Article  CAS  Google Scholar 

  22. Li, B. et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl. Acad. Sci. USA 104, 4571–4576 (2007).

    Article  CAS  Google Scholar 

  23. Samanta, A. et al. TGF-β and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc. Natl. Acad. Sci. USA 105, 14023–14027 (2008).

    Article  CAS  Google Scholar 

  24. Putnam, A.L. et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 58, 652–662 (2009).

    Article  CAS  Google Scholar 

  25. Kim, J.Y. et al. Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (Treg)-like cells. Biochem. Biophys. Res. Commun. 362, 44–50 (2007).

    Article  CAS  Google Scholar 

  26. Lopes, J.E. et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J. Immunol. 177, 3133–3142 (2006).

    Article  CAS  Google Scholar 

  27. Mihindukulasuriya, K.A., Zhou, G., Qin, J. & Tan, T.H. Protein phosphatase 4 interacts with and down-regulates insulin receptor substrate 4 following tumor necrosis factor-α stimulation. J. Biol. Chem. 279, 46588–46594 (2004).

    Article  CAS  Google Scholar 

  28. Schett, G., Steiner, C.W., Xu, Q., Smolen, J.S. & Steiner, G. TNFα mediates susceptibility to heat-induced apoptosis by protein phosphatase-mediated inhibition of the HSF1/hsp70 stress response. Cell Death Differ. 10, 1126–1136 (2003).

    Article  CAS  Google Scholar 

  29. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  Google Scholar 

  30. de Zoeten, E.F. et al. Foxp3 processing by proprotein convertases and control of regulatory T cell function. J. Biol. Chem. 284, 5709–5716 (2009).

    Article  CAS  Google Scholar 

  31. Hollstein, M. & Hainaut, P. Massively regulated genes: the example of TP53. J. Pathol. 220, 164–173 (2010).

    CAS  PubMed  Google Scholar 

  32. Huang, B., Yang, X.D., Lamb, A. & Chen, L.F. Posttranslational modifications of NF-κB: another layer of regulation for NF-κB signaling pathway. Cell Signal. 22, 1282–1290 (2010).

    Article  CAS  Google Scholar 

  33. Chen, L.F. et al. NF-κB RelA phosphorylation regulates RelA acetylation. Mol. Cell Biol. 25, 7966–7975 (2005).

    Article  CAS  Google Scholar 

  34. Nie, Y. et al. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat. Cell Biol. 11, 492–500 (2009).

    Article  CAS  Google Scholar 

  35. Matsuzaki, H. et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl. Acad. Sci. USA 102, 11278–11283 (2005).

    Article  CAS  Google Scholar 

  36. Zanin-Zhorov, A. et al. Protein kinase C-θ mediates negative feedback on regulatory T cell function. Science 328, 372–376 (2010).

    Article  CAS  Google Scholar 

  37. Pan, F. et al. Eos Mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325, 1142–1146 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by grants from National Natural Science Foundation of China (81072470) and the Shanghai Municipal Education Commission (J50207).

Author information

Authors and Affiliations

Authors

Contributions

H.N., Y.Z., R.L. and J.Z.Z. designed and discussed the study. H.N., Y.Z. and R.L. performed the majority of the experiments and analyzed the data. L.F., X.C. and B.W. performed cell culture and retroviral transduction. D.H. and L.X. recruited study participants and provided clinical samples. H.N., Y.Z., R.L., T.B.G., L.F., X.L., Y.E.C. and J.Z.Z. contributed to the writing of the paper. J.Z.Z. supervised the project and took responsibility for the integrity of the data and the accuracy of the data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jingwu Z Zhang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Supplementary Tables 1–3 (PDF 809 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, H., Zheng, Y., Li, R. et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med 19, 322–328 (2013). https://doi.org/10.1038/nm.3085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing