Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The ribonuclease activity of SAMHD1 is required for HIV-1 restriction

Subjects

Abstract

The HIV-1 restriction factor SAM domain– and HD domain–containing protein 1 (SAMHD1)1,2 is proposed to inhibit HIV-1 replication by depleting the intracellular dNTP pool3,4,5. However, phosphorylation of SAMHD1 regulates its ability to restrict HIV-1 without decreasing cellular dNTP levels6,7,8, which is not consistent with a role for SAMHD1 dNTPase activity in HIV-1 restriction. Here, we show that SAMHD1 possesses RNase activity and that the RNase but not the dNTPase function is essential for HIV-1 restriction. By enzymatically characterizing Aicardi-Goutières syndrome (AGS)-associated SAMHD1 mutations and mutations in the allosteric dGTP-binding site of SAMHD1 for defects in RNase or dNTPase activity, we identify SAMHD1 point mutants that cause loss of one or both functions. The RNase-positive and dNTPase-negative SAMHD1D137N mutant is able to restrict HIV-1 infection, whereas the RNase-negative and dNTPase-positive SAMHD1Q548A mutant is defective for HIV-1 restriction. SAMHD1 associates with HIV-1 RNA and degrades it during the early phases of cell infection. SAMHD1 silencing in macrophages and CD4+ T cells from healthy donors increases HIV-1 RNA stability, rendering the cells permissive for HIV-1 infection. Furthermore, phosphorylation of SAMHD1 at T592 negatively regulates its RNase activity in cells and impedes HIV-1 restriction. Our results reveal that the RNase activity of SAMHD1 is responsible for preventing HIV-1 infection by directly degrading the HIV-1 RNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The RNase but not the dNTPase function of SAMHD1 is required for HIV-1 restriction.
Figure 2: SAMHD1 directly degrades HIV-1 RNA in human monocytic cells.
Figure 3: SAMHD1 degrades HIV-1 RNA in primary human MDMs and CD4+ T cells.
Figure 4: Phosphorylation of SAMHD1 regulates RNase activity.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    Article  CAS  Google Scholar 

  2. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    Article  CAS  Google Scholar 

  3. Lahouassa, H. et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 13, 223–228 (2012).

    Article  CAS  Google Scholar 

  4. Baldauf, H.M. et al. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nat. Med. 18, 1682–1689 (2012).

    Article  CAS  Google Scholar 

  5. St Gelais, C. et al. SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4+ T-lymphocytes cannot be upregulated by interferons. Retrovirology 9, 105 (2012).

    Article  CAS  Google Scholar 

  6. White, T.E. et al. The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 13, 441–451 (2013).

    Article  CAS  Google Scholar 

  7. Cribier, A., Descours, B., Valadao, A.L., Laguette, N. & Benkirane, M. Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Reports 3, 1036–1043 (2013).

    Article  CAS  Google Scholar 

  8. Welbourn, S., Dutta, S.M., Semmes, O.J. & Strebel, K. Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. J. Virol. 87, 11516–11524 (2013).

    Article  CAS  Google Scholar 

  9. Rice, G.I. et al. Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832 (2009).

    Article  CAS  Google Scholar 

  10. Crow, Y.J. & Rehwinkel, J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum. Mol. Genet. 18, R130–R136 (2009).

    Article  CAS  Google Scholar 

  11. Goldstone, D.C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    Article  CAS  Google Scholar 

  12. Powell, R.D., Holland, P.J., Hollis, T. & Perrino, F.W. Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J. Biol. Chem. 286, 43596–43600 (2011).

    Article  CAS  Google Scholar 

  13. Goncalves, A. et al. SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutieres syndrome-associated mutations. Hum. Mutat. 33, 1116–1122 (2012).

    Article  CAS  Google Scholar 

  14. White, T.E. et al. Contribution of SAM and HD domains to retroviral restriction mediated by human SAMHD1. Virology 436, 81–90 (2013).

    Article  CAS  Google Scholar 

  15. Tungler, V. et al. Single-stranded nucleic acids promote SAMHD1 complex formation. J. Mol. Med. (Berl.) 91, 759–770 (2013).

    Article  Google Scholar 

  16. Beloglazova, N. et al. Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J. Biol. Chem. 288, 8101–8110 (2013).

    Article  CAS  Google Scholar 

  17. Barbas, A. et al. New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product. J. Biol. Chem. 283, 13070–13076 (2008).

    Article  CAS  Google Scholar 

  18. Mizrahi, V., Usdin, M.T., Harington, A. & Dudding, L.R. Site-directed mutagenesis of the conserved Asp-443 and Asp-498 carboxy-terminal residues of HIV-1 reverse transcriptase. Nucleic Acids Res. 18, 5359–5363 (1990).

    Article  CAS  Google Scholar 

  19. Niranjanakumari, S., Lasda, E., Brazas, R. & Garcia-Blanco, M.A. Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26, 182–190 (2002).

    Article  CAS  Google Scholar 

  20. Hofmann, H. et al. The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus. J. Virol. 86, 12552–12560 (2012).

    Article  CAS  Google Scholar 

  21. Brandariz-Nuñez, A. et al. Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac . Retrovirology 9, 49 (2012).

    Article  Google Scholar 

  22. Yan, J. et al. Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection. J. Biol. Chem. 288, 10406–10417 (2013).

    Article  CAS  Google Scholar 

  23. Ji, X. et al. Mechanism of allosteric activation of SAMHD1 by dGTP. Nat. Struct. Mol. Biol. 20, 1304–1309 (2013).

    Article  CAS  Google Scholar 

  24. Zhu, C. et al. Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase. Nat. Commun. 4, 2722 (2013).

    Article  Google Scholar 

  25. Descours, B. et al. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 9, 87 (2012).

    Article  CAS  Google Scholar 

  26. Diamond, T.L. et al. Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J. Biol. Chem. 279, 51545–51553 (2004).

    Article  CAS  Google Scholar 

  27. Manel, N. et al. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467, 214–217 (2010).

    Article  CAS  Google Scholar 

  28. Rohman, M. & Harrison-Lavoie, K.J. Separation of copurifying GroEL from glutathione-S-transferase fusion proteins. Protein Expr. Purif. 20, 45–47 (2000).

    Article  CAS  Google Scholar 

  29. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of our laboratory for discussion and technical help. We thank D. Littman (New York University School of Medicine) for HIV-1-GFP and HCMV-VSV-G, N. Manel (Institut Curie) for pLaiΔenvGFP3 and A. Cimarelli (University of Lyon) for pSIV3+ and pSIV3+ΔVpx. This work was supported by the US National Institutes of Health (R01 A1087390 and R21 AI102824 to F.D.-G. and GM104198 and AI049781 to B.K.), the Korean Institute for Basic Science (EM1402 to D.B.), the Korean Basic Science Research Program (2011-0014523 to D.B.), the Korean Creative Research Initiative Program (Research Center for Antigen Presentation, 2006-0050689 to K.A.) and BK21 plus fellowship to J.C., S.-Y.K. and M.S. from a National Research Foundation grant funded by the Ministry of Education, Science, and Technology of Korea.

Author information

Authors and Affiliations

Authors

Contributions

J.R., C.O., S.K. and K.A. designed the study and wrote the manuscript. J.R., C.O., J.C., S.K., S.-Y.K., M.S. and J.A.H. performed the experiments and analyses. J.K., D.S., B.K., D.B. and C.-H.Y. analyzed the data. T.E.W., A.B.-N. and F.D.-G. provided materials. All authors discussed the data.

Corresponding author

Correspondence to Kwangseog Ahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 2 and Supplementary Figures 1–13 (PDF 1402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryoo, J., Choi, J., Oh, C. et al. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 20, 936–941 (2014). https://doi.org/10.1038/nm.3626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing