Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capturing the biology of disease severity in a PSC-based model of familial dysautonomia

Abstract

Familial dysautonomia (FD) is a debilitating disorder that affects derivatives of the neural crest (NC). For unknown reasons, people with FD show marked differences in disease severity despite carrying an identical, homozygous point mutation in IKBKAP, encoding IκB kinase complex–associated protein. Here we present disease-related phenotypes in human pluripotent stem cells (PSCs) that capture FD severity. Cells from individuals with severe but not mild disease show impaired specification of NC derivatives, including autonomic and sensory neurons. In contrast, cells from individuals with severe and mild FD show defects in peripheral neuron survival, indicating that neurodegeneration is the main culprit for cases of mild FD. Although genetic repair of the FD-associated mutation reversed early developmental NC defects, sensory neuron specification was not restored, indicating that other factors may contribute to disease severity. Whole-exome sequencing identified candidate modifier genes for individuals with severe FD. Our study demonstrates that PSC-based modeling is sensitive in recapitulating disease severity, which presents an important step toward personalized medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypes in rNC cells derived from FD PSCs recapitulate differences between mild and severe FD.
Figure 2: FD phenotypes in peripheral SNs and ANs.
Figure 3: Impaired survival and pharmacological rescue in vitro in SNs from mild and severe FD.
Figure 4: Genetic rescue of severe FD in PSCs and in vitro FD phenotypes.
Figure 5: Mechanistic insight into the molecular difference between mild and severe FD.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Inoue, H., Nagata, N., Kurokawa, H. & Yamanaka, S. iPS cells: a game changer for future medicine. EMBO J. 33, 409–417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeltner, N. & Studer, L. Pluripotent stem cell-based disease modeling: current hurdles and future promise. Curr. Opin. Cell Biol. 37, 102–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Bellin, M., Marchetto, M.C., Gage, F.H. & Mummery, C.L. Induced pluripotent stem cells: the new patient? Nat. Rev. Mol. Cell Biol. 13, 713–726 (2012).

    Article  PubMed  Google Scholar 

  4. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Axelrod, F.B. Familial dysautonomia. Muscle Nerve 29, 352–363 (2004).

    Article  PubMed  Google Scholar 

  6. Slaugenhaupt, S.A. et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am. J. Hum. Genet. 68, 598–605 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Axelrod, F.B., Goldberg, J.D., Ye, X.Y. & Maayan, C. Survival in familial dysautonomia: Impact of early intervention. J. Pediatr. 141, 518–523 (2002).

    Article  PubMed  Google Scholar 

  8. Dong, J., Edelmann, L., Bajwa, A.M., Kornreich, R. & Desnick, R.J. Familial dysautonomia: detection of the IKBKAP IVS20+6T→C and R696P mutations and frequencies among Ashkenazi Jews. Am. J. Med. Genet. 110, 253–257 (2002).

    Article  PubMed  Google Scholar 

  9. Pearson, J., Pytel, B.A., Grover-Johnson, N., Axelrod, F. & Dancis, J. Quantitative studies of dorsal root ganglia and neuropathologic observations on spinal cords in familial dysautonomia. J. Neurol. Sci. 35, 77–92 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. Pearson, J. & Pytel, B.A. Quantitative studies of sympathetic ganglia and spinal cord intermedio-lateral gray columns in familial dysautonomia. J. Neurol. Sci. 39, 47–59 (1978).

    Article  CAS  PubMed  Google Scholar 

  11. Axelrod, F.B. et al. Progressive sensory loss in familial dysautonomia. Pediatrics 67, 517–522 (1981).

    CAS  PubMed  Google Scholar 

  12. Slaugenhaupt, S.A. et al. Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum. Mol. Genet. 13, 429–436 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Axelrod, F.B. et al. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr. Res. 70, 480–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, G. et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat. Biotechnol. 30, 1244–1248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miller, J.D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 85, 348–362 (2009).

    Article  CAS  Google Scholar 

  17. Lee, G. et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat. Biotechnol. 25, 1468–1475 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Zeltner, N., Lafaille, F.G., Fattahi, F. & Studer, L. Feeder-free derivation of neural crest progenitor cells from human pluripotent stem cells. J. Vis. Exp. 87, e51609 (2014).

    Google Scholar 

  19. Chambers, S.M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wainger, B.J. et al. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat. Neurosci. 18, 17–24 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Mica, Y., Lee, G., Chambers, S.M., Tomishima, M.J. & Studer, L. Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep. 3, 1140–1152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fattahi, F. et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531, 105–109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Howard, M.J. Mechanisms and perspectives on differentiation of autonomic neurons. Dev. Biol. 277, 271–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Grundy, D. & Schemann, M. Enteric nervous system. Curr. Opin. Gastroenterol. 23, 121–126 (2007).

    Article  PubMed  Google Scholar 

  25. Schlosser, G. Induction and specification of cranial placodes. Dev. Biol. 294, 303–351 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Oh, Y. et al. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 19, 95–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dietrich, P., Alli, S., Shanmugasundaram, R. & Dragatsis, I. IKAP expression levels modulate disease severity in a mouse model of familial dysautonomia. Hum. Mol. Genet. 21, 5078–5090 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morini, E. et al. Sensory and autonomic deficits in a new humanized mouse model of familial dysautonomia. Hum. Mol. Genet. 25, 1116–1128 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ding, Q. et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12, 393–394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Itan, Y. et al. The human gene damage index as a gene-level approach to prioritizing exome variants. Proc. Natl. Acad. Sci. USA 112, 13615–13620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Itan, Y. et al. The mutation significance cutoff: gene-level thresholds for variant predictions. Nat. Methods 13, 109–110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Itan, Y. et al. HGCS: an online tool for prioritizing disease-causing gene variants by biological distance. BMC Genomics 15, 256 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Dubois, N.C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29, 1011–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berthold, M. et al. KNIME: The Konstanz Information Miner. in Data Analysis, Machine Learning and Applications (eds. Preisach, C., Burkhardt, H., Schmidt-Thieme, L. & Decker, R.) 319–326 (Springer Berlin Heidelberg, 2008).

  39. Ooi, Y.H., Oh, D.J. & Rhee, D.J. Analysis of α2-adrenergic receptors and effect of brimonidine on matrix metalloproteinases and their inhibitors in human ciliary body. Invest. Ophthalmol. Vis. Sci. 50, 4237–4243 (2009).

    Article  PubMed  Google Scholar 

  40. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Engström, P.G. et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat. Methods 10, 1185–1191 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.-F. Brunet (Ecole Normale Supérieure) for providing us with the PHOX2A antibody, S. Irion and M. Tomishima for critical review of the manuscript, A. Hudon for general help, H. Ralph (Weill Cornell Cell Screening Core) for image quantification and the Bioinformatics, Integrated Genomics Operations (funded by the NCI Cancer Center Support Grant (CCSG, P30 CA08748), Cycle for Survival and the Marie-Josée and Henry R. Kravis Center for Molecular Oncology) and Flow Cytometry Core Facilities at Sloan Kettering Institute. This work was supported by the Swiss National Science Foundation (N.Z.); the US National Institutes of Health (P30CA08748), New York State Stem Cell Science (NYSTEM) (C026446 and C026447) and the Tri-institutional Stem Cell Initiative (Starr Foundation) (L.S.); and a Robertson Investigator Award from New York Stem Cell Foundation, Maryland Stem Cell Research Funding (MSCRF/TEDCO) and the Adrienne Helis Malvin Medical Research Foundation (G.L.).

Author information

Authors and Affiliations

Authors

Contributions

N.Z.: design and conception of the study, writing of the manuscript, cell maintenance, reprogramming, GO term analysis, directed differentiation and survival assays, protocol optimization, gene targeting of PSCs and cellular and molecular assays. F.F.: AN differentiation protocol establishment and execution and survival assays in ANs. J.T.: RNA-sequencing data analysis. N.C.D.: design and execution of cardiac mesoderm differentiations. B.Z.: data quantification of scratch assay. N.S. and M.A.S.: western blotting. G.L.: reprogramming of S3 PSCs and mentoring. J.-L.C., L. Shang and F.L.: advice and analysis of whole-exome sequencing. L. Studer: design and conception of the study, data interpretation, writing of the manuscript and mentoring.

Corresponding authors

Correspondence to Nadja Zeltner or Lorenz Studer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–17 and Supplementary Tables 1 and 3 (PDF 18148 kb)

Supplementary Table 2

List of candidate gene analysis from whole-exome sequencing (XLSX 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeltner, N., Fattahi, F., Dubois, N. et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med 22, 1421–1427 (2016). https://doi.org/10.1038/nm.4220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing