Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT–mTORC1 activation

Abstract

Bromodomain and extraterminal domain (BET) protein inhibitors are emerging as promising anticancer therapies. The gene encoding the E3 ubiquitin ligase substrate-binding adaptor speckle-type POZ protein (SPOP) is the most frequently mutated in primary prostate cancer. Here we demonstrate that wild-type SPOP binds to and induces ubiquitination and proteasomal degradation of BET proteins (BRD2, BRD3 and BRD4) by recognizing a degron motif common among them. In contrast, prostate cancer–associated SPOP mutants show impaired binding to BET proteins, resulting in decreased proteasomal degradation and accumulation of these proteins in prostate cancer cell lines and patient specimens and causing resistance to BET inhibitors. Transcriptome and BRD4 cistrome analyses reveal enhanced expression of the GTPase RAC1 and cholesterol-biosynthesis-associated genes together with activation of AKT–mTORC1 signaling as a consequence of BRD4 stabilization. Our data show that resistance to BET inhibitors in SPOP-mutant prostate cancer can be overcome by combination with AKT inhibitors and further support the evaluation of SPOP mutations as biomarkers to guide BET-inhibitor-oriented therapy in patients with prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SPOP interacts with and promotes BET protein ubiquitination and degradation.
Figure 2: The SBC motif in BET proteins is a SPOP-recognized degron.
Figure 3: Expression of BET proteins is elevated in SPOP-mutant-expressing prostate cancer cell lines and specimens from patients with prostate cancer.
Figure 4: Mechanism of BET inhibitor resistance in prostate cancer cells expressing SPOP mutants.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Delmore, J.E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dawson, M.A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Asangani, I.A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fong, C.Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rathert, P. et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 525, 543–547 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shu, S. et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature 529, 413–417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barbieri, C.E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

  12. Theurillat, J.P. et al. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science 346, 85–89 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geng, C. et al. Prostate cancer–associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc. Natl. Acad. Sci. USA 110, 6997–7002 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. An, J. et al. Truncated ERG oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol. Cell 59, 904–916 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Zhuang, M. et al. Structures of SPOP–substrate complexes: insights into molecular architectures of BTB–Cul3 ubiquitin ligases. Mol. Cell 36, 39–50 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blattner, M. et al. SPOP mutations in prostate cancer across demographically diverse patient cohorts. Neoplasia 16, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mertz, J.A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. USA 108, 16669–16674 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roe, J.S., Mercan, F., Rivera, K., Pappin, D.J. & Vakoc, C.R. BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol. Cell 58, 1028–1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhuang, L., Lin, J., Lu, M.L., Solomon, K.R. & Freeman, M.R. Cholesterol-rich lipid rafts mediate AKT-regulated survival in prostate cancer cells. Cancer Res. 62, 2227–2231 (2002).

    CAS  PubMed  Google Scholar 

  22. Yue, S. et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19, 393–406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lasserre, R. et al. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat. Chem. Biol. 4, 538–547 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Saci, A., Cantley, L.C. & Carpenter, C.L. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol. Cell 42, 50–61 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Esen, E. et al. WNT–LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17, 745–755 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blattner, M. et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling. Cancer Cell 31, 436–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stratikopoulos, E.E. et al. Kinase and BET inhibitors together clamp inhibition of PI3K signaling and overcome resistance to therapy. Cancer Cell 27, 837–851 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saura, C. et al. A first-in-human phase I study of the ATP-competitive AKT inhibitor ipatasertib demonstrates robust and safe targeting of AKT in patients with solid tumors. Cancer Discov. 7, 102–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. An, J., Wang, C., Deng, Y., Yu, L. & Huang, H. Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep. 6, 657–669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Groner, A.C. et al. TRIM24 is an oncogenic transcriptional activator in prostate cancer. Cancer Cell 29, 846–858 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan, S.C. et al. Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies. Nucleic Acids Res. 43, 5880–5897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blee, A.M., Liu, S., Wang, L. & Huang, H. BET bromodomain-mediated interaction between ERG and BRD4 promotes prostate cancer cell invasion. Oncotarget 7, 38319–38332 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayward, S.W. et al. Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1. In Vitro Cell. Dev. Biol. Anim. 31, 14–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patel, A.J. et al. BET bromodomain inhibition triggers apoptosis of NF1-associated malignant peripheral nerve sheath tumors through Bim induction. Cell Rep. 6, 81–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Renwick, N. et al. Multicolor microRNA FISH effectively differentiates tumor types. J. Clin. Invest. 123, 2694–2702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao, Y. et al. Activation of P-TEFb by androgen receptor–regulated enhancer RNAs in castration-resistant prostate cancer. Cell Rep. 15, 599–610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mittempergher, L. et al. Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh frozen matched tissue. PLoS One 6, e17163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hagen, R.M., Rhodes, A., Oxley, J. & Ladomery, M.R. A M-MLV reverse transcriptase with reduced RNaseH activity allows greater sensitivity of gene expression detection in formalin fixed and paraffin embedded prostate cancer samples. Exp. Mol. Pathol. 95, 98–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, L. et al. BRCA1 is a negative modulator of the PRC2 complex. EMBO J. 32, 1584–1597 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Robinson, M.D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, W. et al. Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 155, 1581–1595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhuang, L., Kim, J., Adam, R.M., Solomon, K.R. & Freeman, M.R. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J. Clin. Invest. 115, 959–968 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health (CA134514, CA130908 and CA193239 to H.H.), the US Department of Defense (W81XWH-09-1-622 to H.H.), the National Natural Science Foundation of China (81672558 and 81201533 to C.W.; 81572768 to P.Z.; 31560320 to D. Wang; 31400753 to K.G.), and the National Key Research and Development Plan of China–Precision Medicine Project (2016YFC0902202 to Y.S., C.W. and S.R.).

Author information

Authors and Affiliations

Authors

Contributions

H.H. and C.W. conceived the study. P.Z., D.W., Y. Zhao, S.R., K.G., Z.Y., S.W., C.-W.P., Y. Zhu, Y.Y., D. Wu, Y.H., D. Lu, L.Y., S.Z., Y.L., D. Lin, Y.W. and Y.C. acquired patient samples, generated organoids, and performed the experiments and data analyses. Z.Y. and L.W. performed bioinformatics analyses. X.L. and J.Z. supervised histological and IHC data analyses. H.H., C.W. and Y.S. wrote the paper.

Corresponding authors

Correspondence to Yinghao Sun, Chenji Wang or Haojie Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1–14. (PDF 15067 kb)

Life Sciences Reporting Summary (PDF 171 kb)

Supplementary Table 1

SPOP interacted proteins identified by yeast two hybrid screen. (XLSX 13 kb)

Supplementary Table 2

Gene Ontology (GO) analysis of SPOP binding partners indetified via yeast-two-hybrid screen. (XLSX 14 kb)

Supplementary Table 3

SPOP mutation status, BRD2/3/4 IHC scores in 99 cases of prostate cancer specimens and the associated clinical information. (XLSX 21 kb)

Supplementary Table 4

129 genes highly expressed in SPOP mutated prostate cancers compared to SPOP wild-type counterparts in the TCGA dataset. (XLSX 11 kb)

Supplementary Table 5

Upregulated genes in the group of BRDs OE vs Control. (XLSX 239 kb)

Supplementary Table 6

Primers used for RT-qPCR in cultured cell lines, FFPE prostate cancer tissues, ChIP and sequences of shRNAs. (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wang, D., Zhao, Y. et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT–mTORC1 activation. Nat Med 23, 1055–1062 (2017). https://doi.org/10.1038/nm.4379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing