Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression

Abstract

Neutral endopeptidase 24.11 (NEP) is a cell-surface enzyme expressed by prostatic epithelial cells that cleaves and inactivates neuropeptides implicated in the growth of androgen-independent prostate cancer (PC). We report that NEP expression and catalytic activity are lost in vitro in androgen-independent but not androgen-dependent PC cell lines. In vivo, NEP protein expression is commonly decreased in cancer cells of metastatic PC specimens from patients with androgen-independent but not androgen-dependent PC. Overexpression of NEP in androgen-independent PC cells or incubation with recombinant NEP inhibits PC cell growth. Furthermore, in androgen-dependent PC cells, expression of NEP is transcriptionally regulated by androgen and decreases with androgen withdrawal. These data suggest that decreased NEP expression, common in androgen-independent PCs, is facilitated by the elimination of androgens, and that NEP loss plays an important role in the development of androgen-independent PC by allowing PC cells to use mitogenic neuropeptides as an alternate source to androgen in order to stimulate cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bologna, M., Festuccia, C., Muzi, P., Biordi, L. & Ciomei, M. Bombesin stimulates growth of human prostatic cells in vitro. Cancer 63, 1714–1720 (1989).

    Article  CAS  Google Scholar 

  2. Sehgal, I. et al. Neurotensin is an autocrine trophic factor stimulated by androgen withdrawal in human prostate cancer. Proc. Natl. Acad. Sci. USA 91, 4673–4677 (1994).

    Article  CAS  Google Scholar 

  3. Nelson, J.B. et al. Endothelin-1 production and decreased endothelin B receptor expression in advanced prostate cancer. Cancer Res. 56, 663–668 (1996).

    CAS  PubMed  Google Scholar 

  4. Abrahamsson, P.A. & Di Sant'Agnese, P.A. Neuroendocrine cells in the human prostate gland. J. Androl. 14, 307–309 (1993).

    CAS  PubMed  Google Scholar 

  5. Nelson, J.B. et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nature Med. 1, 944–949 (1995).

    Article  CAS  Google Scholar 

  6. Cussenot, O. et al. Plasma neuroendocrine markers in patients with benign prostatic hyperplasia and prostatic carcinoma. J. Urol. 155, 1340–1343 (1996).

    Article  CAS  Google Scholar 

  7. Reile, H., Armatis, P.E. & Schally, A.V. Characterization of high-affinity receptors for bombesin/gastrin releasing peptide on the human prostate cancer cell lines PC-3 DU-145: Internalization of receptor bound 125l-(Tyr4) bombesin by tumor cells. Prostate 25, 29–38 (1994).

    Article  CAS  Google Scholar 

  8. Pinski, J., Halmos, G. & Schally, A.V. Somatostatin analog RC-160 and bombesin/gastrin-releasing peptide antagonist RC-3095 inhibit the growth of an-drogen-independent DU-145 human prostate cancer cell line in nude mice. Cancer Lett 71, 189–196 (1993).

    Article  CAS  Google Scholar 

  9. Aprikian, A.G. et al. Neuroendocrine differentiation in metastatic prostatic adenocarcinoma. J. Urol. 151, 914–919 (1994).

    Article  CAS  Google Scholar 

  10. Cohen, R., Glezerson, O. & Haffejee, Z. Neuro-endocrine cells: Prognostic parameter in prostate cancer. Br. J. Urol. 68, 57–62 (1991).

    Article  Google Scholar 

  11. Kenny, A.J., O'Hare, M.J. & Gusterson, B.A. Cell-surface peptidases as modulators of growth and differentiation. Lancet 2, 785–787 (1989).

    Article  CAS  Google Scholar 

  12. Shipp, M.A. & Look, A.T. Hematopoietic differentiation antigens that are membrane-associated enzymes: Cutting is the key! Blood 84, 1052–1070 (1993).

    Google Scholar 

  13. Shipp, M.A. et al. Common acute lymphoblastic leukemia antigen (CALLA) is active neutral endopeptidase 24.11 (“enkephalinase”): direct evidence by cDNA transfection analysis. Proc. Natl. Acad. Sci. USA 86, 297–301 (1989).

    Article  CAS  Google Scholar 

  14. Checler, F., Emson, P.C., Vincent, J.P. & Kitabgi, P. Inactivation of neurotensin by rat brain synaptic membranes: Cleavage at the Pro10-Tyr11 bond by endopeptidase 24.11 (enkephalinase) and a peptidase different from proline-endopeptidase. J. Neurochem. 43, 1295–1301 (1984).

    Article  CAS  Google Scholar 

  15. Kenny, A.J. Endopeptidase-24.11: putative substrates and possible roles. Biochem Soc. Trans. 21, 663–668 (1993).

    Article  CAS  Google Scholar 

  16. Shipp, M.A. et al. CD10/neutral endopeptidase 24.11 hydrolyzes bombesin-like peptides and regulates the growth of small cell carcinomas of the lung. Proc. Natl. Acad. Sci. USA 88, 10662–10666 (1991).

    Article  CAS  Google Scholar 

  17. Nanus, D.M., Papandreou, C.N. & Albino, A.P. Cell-Surface Peptidases in Health and Disease (eds. Kenny, J. & Boustead, CM.) 353–369 (BIOS Scientific Publishers, Oxford, 1997).

    Google Scholar 

  18. Fournie-Zaluski, M.C. et al. Inhibitory potency of various peptides on enkephalinase activity from mouse striatum. Biochem. Biophys. Res. Commun. 91, 130–135 (1979).

    Article  CAS  Google Scholar 

  19. Matsas, R., Kenny, A. & Turner, A.J. The metabolism of neuropeptides: The hydrolysis of peptides, including enkephalins, tacykinins and their analogues, by en-dopeptidase-24.11. Biochem. J. 223, 433–440 (1984).

    Article  CAS  Google Scholar 

  20. Gschwend, J.E., Fair, W.R. & Powell, C.T. Evaluation of the tetracycline-repressible transactivator system for inducible gene expression in human prostate cancer cell lines. Prostate 33, 166–176 (1997).

    Article  CAS  Google Scholar 

  21. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  22. Veldscholte, J., Berrevoets, C.A., Brinkmann, A.O., Grootegoed, J.A. & Mulder, E. Anti-androgens and the mutated androgen receptor of LNCaP cells: Differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry 31, 2393–2399 (1992).

    Article  CAS  Google Scholar 

  23. Klocker, H. et al. Basic Research in Urologic Oncology (eds. Luciani, L, Debruyne, F.M.J. & Schalken, J.A.) 28–40 (Karger, Basel, 1996).

    Google Scholar 

  24. Taplin, M.E. et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 332, 1393–1398 (1995).

    Article  CAS  Google Scholar 

  25. Ishimaru, F. & Shipp, M.A. Analysis of the human CD10/neutral endopeptidase 24.11 promoter region: Two separate regulatory elements. Blood 85, 3199–3207 (1995).

    CAS  PubMed  Google Scholar 

  26. Israeli, R.S., Powell, C.T., Corr, J.G., Fair, W.R. & Heston, W.D. Expression of the prostate-specific membrane antigen. Cancer Res. 54, 1807–1811 (1994).

    CAS  PubMed  Google Scholar 

  27. Borson, D.B. & Gruenert, D.C. Glucocorticoids induce neutral endopeptidase in transformed human tracheal epithelial cells. Am. J. Physiol. 260, L83–L89 (1991).

    CAS  PubMed  Google Scholar 

  28. Casey, M.L., Smith, J.W., Nagai, K., Hersh, L.B. & MacDonald, P.C. Progesterone-regulated cyclic modulation of membrane metalloendopeptidase (enkephalinase) in human endometrium. J. Biol. Chem. 34, 23041–23047 (1991).

    Google Scholar 

  29. Scher, H.I., Mazumdar, M. & Kelly, W.K. Clinical trials in relapsed prostate cancer: Defining the target. J. Natl. Cancer Inst. 88, 1623–1634 (1997).

    Article  Google Scholar 

  30. McDonnell, T.J., et al. Expression of the proto-oncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 52, 6940–6944 (1992).

    CAS  PubMed  Google Scholar 

  31. Bookstein, R., MacGrogan, D., Hilsenbeck, S.G., Sharkey, F. & Allred, D.C. p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res. 53, 3369–3373 (1993).

    CAS  PubMed  Google Scholar 

  32. Steiner, M.S. Review of peptide growth factors in benign prostatic hyperplasia and urological malignancy. J. Urol. 153, 1085–1096 (1995).

    Article  CAS  Google Scholar 

  33. Duncan, M.D., Harmon, J.W. & Duncan, K.L.K. Actin disruption inhibits bombesin stimulation of focal adhesion kinase (pp125(FAK)) in prostate carcinoma. J. Surg. Res. 63, 359–363 (1996).

    Article  CAS  Google Scholar 

  34. Rozengurt, E. Convergent signalling in the action of integrins, neuropeptides, growth factors and oncogenes. Cancer Surv. 24, 81–96 (1995).

    CAS  PubMed  Google Scholar 

  35. Frame, K.L., Patton, K., Reed, M.J., Ghilchik, M.W. & Parish, D.C. Angiotensin-converting enzyme and enkephalinase in human breast cyst fluid. Br. J. Cancer 74, 807–813 (1996).

    Article  CAS  Google Scholar 

  36. Bogenrieder, T. et al. Expression and localization of aminopeptidase A, aminopeptidase N, and dipeptidyl peptidase IV in benign and malignant human prostate tissue. Prostate 33, 225–232 (1997).

    Article  CAS  Google Scholar 

  37. Papandreou, C.N., Bogenrieder, T., Scher, H.I., Albino, A.P. & Nanus, D.M. Expression and sequence analysis of the SD11/WAF1/CIP1/p21 tumor suppressor gene in prostate cancer cell lines. Int. J. Oncol. 8, 1237–1241 (1996).

    CAS  PubMed  Google Scholar 

  38. Orlowski, M., Michaud, C. & Chu, T.G. A soluble metalloendopeptidase from rat brain. Purification of the enzyme and determination of specificity with synthetic and natural peptides. Eur. J. Biochem. 135, 81–88 (1983).

    Article  CAS  Google Scholar 

  39. Nanus, D.M. et al. Transformation of human kidney proximal tubule cells by ras-containing retroviruses: Implications for tumor progression. J. Exp. Med. 169, 953–972 (1989).

    Article  CAS  Google Scholar 

  40. Hoffman, A.D. et al. Expression of retinoic acid receptor beta in human renal cell carcinomas correlates with sensitivity to the antiproliferative effect of 13-cis retinoic acid. Clin. Cancer Res. 2, 1077–1082 (1996).

    CAS  PubMed  Google Scholar 

  41. Nabeya, Y., et al. The mutational status of p53 protein in gastric and esophageal adenocarcinoma cell lines predicts sensitivity to chemotherapeutic agents. Int. J. Cancer 64, 1–10 (1995).

    Article  Google Scholar 

  42. Cohen, A.J., etal. Neutral endopeptidase variable expression in human lung, inactivation in lung cancer, and modulation of peptide induced calcium flux. Cancer Res. 56, 831–839 (1996).

    CAS  PubMed  Google Scholar 

  43. Nanus, D.M. et al. Flow cytometry as a predictive indicator in patients with operable gastric cancer. J. Clin. Oncol. 7, 1105–1112 (1989).

    Article  CAS  Google Scholar 

  44. Nanus, D.M. et al. Molecular cloning of the human kidney differentiation antigen gp160: Human aminopeptidase A. Proc. Natl. Acad. Sci. USA 90, 7069–7073 (1993).

    Article  CAS  Google Scholar 

  45. Greenberg, M.E. & Bender, T.P. Identification of newly transcribed RNA. Current Protocols in Molecular Biology (eds. Ausubel, F.M., et al.) 4.10.1–4.10.4 (Wiley Interscience, Boston, 1993).

    Google Scholar 

  46. D'Adamio, L, Shipp, M.A., Masteller, E.L. & Reinherz, E.L. Organization of the gene encoding common acute lymphoblastic leukemia antigen (neutral endopeptidase 24.11): multiple miniexons and separate 5′ untranslated regions. Proc. Natl. Acad. Sci. USA 86, 7103–7107 (1989).

    Article  CAS  Google Scholar 

  47. Nanus, D.M. et al. Expression of basic fibroblast growth factor in primary human renal tumors: Correlation with poor survival. J. Natl. Cancer Inst. 85, 1597–1599 (1993).

    Article  CAS  Google Scholar 

  48. Sunday, M.E., Hua, J., Torday, J.S., Reyer, B. & Shipp, M.A. CD/10 neutral endopeptidase 24.11 in developing human fetal lung. J. Clin. Invest. 90, 2517–2525 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papandreou, C., Usmani, B., Geng, Y. et al. Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat Med 4, 50–57 (1998). https://doi.org/10.1038/nm0198-050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0198-050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing