Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer's disease

Abstract

Amyloid is a term for extracellular protein fibril deposits that have characteristic tinctorial and structural properties. Heparan sulphate, or the heparan sulphate proteoglycan perlecan, has been identified in all amyloids and implicated in the earliest stages of inflammation-associated (AA) amyloid induction. Heparan sulphate interacts with the AA amyloid precursor and the β-peptide of Alzheimer's amyloid, imparting characteristic secondary and tertiary amyloid structural features. These observations suggest that molecules that interfere with this interaction may prevent or arrest amyloidogenesis. We synthesized low-molecular-weight (135–1,000) anionic sulphonate or sulphate compounds. When administered orally, these compounds substantially reduced murine splenic AA amyloid progression. They also interfered with heparan sulphate-stimulated β-peptide fibril aggregation in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Young, I.D., Willmer, J.P., and Kisilevsky, R., The ultrastructural localization of sulphated proteoglycans is identical in the amyloids of Alzheimers disease and AA, AL, senile cardiac and medullary carcinoma-associated amyloidosis. Acta Neuropath. 78, 202–209, (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Kisilevsky, R., Inflammation-associated amyloidogenesis-lessons for Alzheimers amyloidogenesis. Molec. Neurobiol. 8, 65–66, 1994.

    Article  CAS  Google Scholar 

  3. Narindrasorasak, S., Altman, R.A., Gonzalez-DeWhitt, P., Greenberg, B.D., & Kisilevsky, R., An interaction between basement membrane and Alzheimer amyloid precursor proteins suggests a role in the pathogenesis of Alzheimer's disease. Lab. Invest. (in the press).

  4. Kisilevsky, R., Lyon, A.W., & Young, I.D., A critical analysis of postulated pathogenetic mechanisms in amyloidogenesis. Crit. Rev. clin. Lab. Sci. 29, 59–82, (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Tatsuta, E., Shirahama, T., Sipe, J.D., Skinner, M., & Cohen, A.S., Kinetics of SAP and SAA production by cultured mouse liver cells. Ann. N.Y., Acad. Sci. 389, 467–470, (1982).

    Article  CAS  Google Scholar 

  6. Tatsuta, E., Sipe, J.D., Shirahama, T., Skinner, M., & Cohen, A.S., Different regulatory mechanisms for serum amyloid A and serum amyloid P by cultured mouse hepatocytes. J. biol. Chem. 258, 5414–5418, (1983).

    CAS  PubMed  Google Scholar 

  7. Mackiewicz, A., Speroff, T., Ganapathi, M.K., & Kushner, I., Effects of cytokine combinations on acute phase protein production in two human hepatoma cell lines. J. Immun. 146, 3032–3037, (1991).

    CAS  PubMed  Google Scholar 

  8. Ganapathi, M.K., Rzewnicki, D., Samols, D., Jiang, S.L., & Kushner, I., Effect of combinations of cytokines and hormones on synthesis of serum amyloid-A and C-reactive protein in HEP 3B-cells. J. Immun. 147, 1261–1265, (1991).

    CAS  PubMed  Google Scholar 

  9. Brissette, L., Young, I., Narindrasorasak, S., Kisilevsky, R., & Deeley, R., Differential induction of the serum amyloid-A gene family in response to an inflammatory agent and to amyloid-enhancing factor. J. biol. Chem. 264, 19327–19332, (1989).

    CAS  PubMed  Google Scholar 

  10. Sipe, J.D., Induction of the acute-phase serum protein SAA requires both RNA and protein synthesis. Br. J., exp. Path. B, 305–310, (1978).

    Google Scholar 

  11. McAdam, K.P.W.J., Elin, R.J., Sipe, J.D., & Wolff, S.M., Changes in human serum amyloid-A and C-reactive protein after etiocholanolone-induced inflammation. J. clin. Invest. 61, 390–394, (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McAdam, K.P.W.J. & Sipe, J.D., Murine model for human secondary amyloidosis: genetic variability of the acute-phase serum protein SAA response to endotoxins and casein. J. exp. Med. 144, 1121–1127, (1976).

    Article  CAS  PubMed  Google Scholar 

  13. Axelrad, M.A., Kisilevsky, R., Willmer, J., Chen, S.J., & Skinner, M., Further characterization of amyloid enhancing factor. Lab.Invest. 47, 139–146, (1982).

    CAS  PubMed  Google Scholar 

  14. Ganowiak, K., Hultman, P., Engstrom, U., Gustavsson, A., & Westermark, P., Fibrils from synthetic amyloid-related peptides enhance development of experimental AA-amyloidosis in mice. Biochem. biophys. Res. Commun. 199, 306–312, (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Kisilevsky, R., & Boudreau, L., The kinetics of amyloid deposition: I. The effect of amyloid enhancing factor and splenectomy. Lab. Invest. 48, 53–59, (1983).

    CAS  PubMed  Google Scholar 

  16. Deal, C.L., Sipe, J.D., Tatsuta, E., Skinner, M., & Cohen, A.S., The effect of amyloid enhancing factor (AEF) on the acute phase serum amyloid A (SAA) and serum amyloid P (SAP) response to silver nitrate. Ann. N.Y., Acad. Sci. 389, 439–441, (1982).

    Article  CAS  Google Scholar 

  17. Lyon, A.W., et al. Co-deposition of basement membrane components during the induction of murine splenic AA amyloid. Lab. Invest. 64, 785–790, (1991).

    CAS  PubMed  Google Scholar 

  18. Snow, A.D., & Kisilevsky, R., A close ultrastructural relationship between sulphated proteoglycans and AA amyloid fibrils. Lab. Invest. 57, 687–698, (1988).

    Google Scholar 

  19. Snow, A.D., Bramson, R., Mar, H., Wight, T.N., & Kisilevsky, R., A temporal and ultrastructural relationship between heparan sulphate proteoglycans and AA amyloid in experimental amyloidosis. J. Histochem. Cytochem. 39, 1321–1330, (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Ailles, L., Kisilevsky, R., & Young, I.D., Induction of perlecan gene expression precedes amyloid formation during experimental murine AA amyloidogenesis. Lab. Invest. 69, 443–448, (1993).

    CAS  PubMed  Google Scholar 

  21. Woodrow, S.I., Gore, J., Kisilevsky, R., & Young, I.D., Type IV collagen gene expression in experimental splenic AA amyloidosis. in Amyloid and Amyloidosis 1993 (eds Kisilevsky, R., et al.). 195-197 Park Ridge, New Jersey, (Parthenon Publishing Group, 1994).

    Google Scholar 

  22. McCubbin, W.D., Kay, C.M., Narindrasorasak, S., & Kisilevsky, R., Circular dichroism and fluorescence studies on two murine serum amyloid A proteins. Biochem. J. 256, 775–783, (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ancsin, J.B., & Kisilevsky, R., High affinity binding of laminin to serum amyloid A and the effect of entactin: Potential nucleation events in the genesis of inflammation-associated amyloid. Lab. Invest. 66, 106A, (1992).

    Google Scholar 

  24. De Beer, M.C., de Beer, F.C., McCubbin, W.D., Kay, C.M., & Kindy, M.S., Structural prerequisites for serum amyloid A fibril formation. J. biol. Chem. 268, 20606–206 12, (1993).

    CAS  PubMed  Google Scholar 

  25. Narindrasorasak, S., et al. High affinity interactions between the Alzheimer's beta-amyloid precursor proteins and the basement membrane form of heparan sulphate proteoglycan. J. biol. Chem. 266, 12878–12883, (1991).

    CAS  PubMed  Google Scholar 

  26. Snow, A.D., & Wight, T.N., Proteoglycans in the pathogenesis of Alzheimers disease and other amyloidoses. Neurobiol. Aging. 10, 481–497, (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Fraser, P.E., Nguyen, J.T., Chin, D.T., & Kirschner, D.A., Effects of sulphate ions on Alzheimer-beta/A4 peptide assemblies—implications for amyloid fibrilproteoglycan interactions. J. Neurochem. 59, 1531–1540, (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Leveugle, B., Scanameo, A., Ding, W., & Fillit, H., Binding of heparan sulphate glycosaminoglycan to beta- amyloid peptide: Inhibition by potentially therapeutic polysulphated compounds. NeuroReport. 5, 1389–1392, (1994).

    CAS  PubMed  Google Scholar 

  29. Puchtler, H., Waldrop, F.S., & Meloan, S.N., Application of thiazole dyes to amyloid under conditions of direct cotton dyeing: correlation of histochemical and chemical data. Histochemistry. 77, 431–445, (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Kagan, D.Z., & Rozinova, V.N., Inhibition of amyloidogenesis with Congo red in experimental amyloidosis. Problemy Tuberkuleza. 40, 72–74, (1974).

    Google Scholar 

  31. Caughey, B., & Raymond, G.J., Sulphated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J. Virol. 67, 643–650, (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Caughey, B., & Race, R.E., Potent inhibition of scrapie-associated PrP accumulation by Congo Red. J. Neurochem. 59, 768–771, (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Caughey, B., Scrapie associated PrP accumulation and its prevention — insights from cell culture. Br. med. Bull. 49, 860–872, (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Perlmutter, L.S., & Chui, H.C., Microangiopathy, the vascular basement membrane and Alzheimers disease — a review. Brain Res. Bull. 24, 677–686, (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Perlmutter, L.S., Barron, E., Saperia, D., & Chui, H.C., Association between vascular basement membrane components and the lesions of Alzheimer's disease. J. Neurosci. Res. 30, 673–681, (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Howard, J., & Pilkington, G.J., Antibodies to fibronectin bind to plaques and other structures in Alzheimer's disease and control brain. Neurosci. Lett. 118, 71–76, (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Small, D.H., et al. Association and release of the amyloid protein precursor of Alzheimer's disease from chick brain extracellular matrix. J. Neurosci. 12, 4143–4150, (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Narindrasorasak, S., et al. Characterization of high affinity binding between laminin and the Alzheimer's disease amyloid precursor proteins. Lab. Invest. 67, 643–652, (1992).

    CAS  PubMed  Google Scholar 

  39. Young, I.D., Ailles, L., Narindrasorasak, S., Tan, R., & Kisilevsky, R., Localization of the basement membrane heparan sulphate proteoglycan in islet amyloid deposits in Type-II diabetes-mellitus. Arch. Path. lab. Med. 116, 951–954, (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kisilevsky, R., Lemieux, L., Fraser, P. et al. Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer's disease. Nat Med 1, 143–148 (1995). https://doi.org/10.1038/nm0295-143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0295-143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing