Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The fate of individual myoblasts after transplantation into muscles of DMD patients

Abstract

Muscle biopsies from six patients with Duchenne muscular dystrophy (DMD) participating in a myoblast transplantation clinical trial were reexamined using a fluorescence in situ hybridization (FISH)-based method. Donor nuclei were detected in all biopsies analyzed, including nine where no donor myoblasts were previously thought to be present. In three patients, more than 10% of the original number of donor cells were calculated as present 6 months after implantation. Half of the detected donor nuclei were fused into host myofibers, and of these, nearly 50% produced dystrophin. These findings demonstrate that although donor myoblasts have persisted after injection, their microenvironment influences whether they fuse and express dystrophin. Our methodology could be used for developing new approaches to improve myoblast transfer efficacy and for the analysis of future gene-and/or cell-based therapies of numerous genetic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Emery, A. Duchenne Muscular Dystrophy, Vol. 1, 317 pp. (Oxford Univ. Press, New York, 1988).

    Google Scholar 

  2. Engel, A.G., Yamamoto, M. & Fischbeck, K.H. in Myology. (eds. Engel, A.G. & Franzini-Armstrong, C.) 1130–1188 (McGraw-Hill, New York, 1994).

    Google Scholar 

  3. Monaco, A.P. et al. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323, 646–650 (1986).

    Article  CAS  Google Scholar 

  4. Burghes, A.H.M. et al. A cDNA clone from the Duchenne/Becker muscular dystrophy gene. Nature 328, 434–437 (1987).

    Article  CAS  Google Scholar 

  5. Hoffman, E.P., Brown, R.H. & Kunkel, L.M., Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    Article  CAS  Google Scholar 

  6. Nudel, U., Robzyk, K. & Yaffe, D. Expression of the putative Duchenne muscular dystrophy gene in differentiated myogenic cell cultures and in the brain. Nature 331, 635–638 (1988).

    Article  CAS  Google Scholar 

  7. Lidov, H.G.W., Byers, T.J., Watkins, S.C. & Kunkel, L.M. Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature 348, 725–728 (1990).

    Article  CAS  Google Scholar 

  8. Byers, T.J., Kunkel, L.M. & Watkins, S.C. The subcellular distribution of dystrophin in mouse skeletal, cardiac and smooth muscle. J. Cell Biol. 115, 411–421 (1991).

    Article  CAS  Google Scholar 

  9. Hoffman, E.P. et al. Dystrophin characterization in muscle biopsies from Duchenne and Becker muscular dystrophy patients. N. Engl. J. Med. 318, 1363–1368 (1988).

    Article  CAS  Google Scholar 

  10. Bulfield, G., Siller, W.G., Wight, P.A.L. & Moore, K.J. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc. Natl. Acad. Sci. USA 81, 1189–1192 (1984).

    Article  CAS  Google Scholar 

  11. Sicinski, P. et al. The molecular basis of muscular dystrophy in the mdx mouse: A point mutation. Science 244, 1578–1580 (1989).

    Article  CAS  Google Scholar 

  12. Cox, G.A. et al. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 364, 725–729 (1993).

    Article  CAS  Google Scholar 

  13. Phelps, S.F. et al. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum. Mol. Genet. 4, 1251–1258 (1995).

    Article  CAS  Google Scholar 

  14. Wells, D.J. et al. Expression of human full-length and minidystrophin in transgenic mdx mice: Implications for gene therapy of Duchenne muscular dystrophy. Hum. Mol. Genet. 4, 1245–1250 (1995).

    Article  CAS  Google Scholar 

  15. Tinsley, J.M. et al. Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384, 349–353 (1996).

    Article  CAS  Google Scholar 

  16. Acsadi, G. et al. Human dystrophin expression in mdx mice after intramuscular injections of DNA constructs. Nature 352, 815–818 (1991).

    Article  CAS  Google Scholar 

  17. Dunckley, M.G., Wells, D.J., Walsh, F.S. & Dickson, G. Direct retroviral-mediated transfer of a dystrophin minigene into mdx mouse muscle in vivo. Hum. Mol. Genet. 2, 717–723 (1993).

    Article  CAS  Google Scholar 

  18. Ragot, T. et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361, 647–650 (1993).

    Article  CAS  Google Scholar 

  19. Vincent, N. et al. Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nature Genet. 5, 130–134 (1993).

    Article  CAS  Google Scholar 

  20. Kochanek, S. et al. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and β-galactosidase. Proc. Natl. Acad. Sci. USA 93, 5731–5736 (1996).

    Article  CAS  Google Scholar 

  21. Kumar-Singh, R. & Chamberlain, J.S. Encapsidated adenovirus minichromosomes allow delivery and expression of a 14Kb dystrophin cDNA to muscle cells. Hum. Mol. Genet. 5, 913–921 (1996).

    Article  CAS  Google Scholar 

  22. Karpati, G. et al. Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation. Am. J. Pathol. 135, 27–32 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Griggs, R.C. & Karpati, G. (eds.) Myoblast Transfer Therapy. 316 pp. (Plenum, New York, 1990).

    Book  Google Scholar 

  24. Partridge, T.A. Myoblast transfer: A possible therapy for inherited myopathies?[invited review]. Muscle Nerve 14, 197–212 (1991).

    Article  CAS  Google Scholar 

  25. Fassati, A., Wells, D.J., Walsh, F.S. & Dickson, G. Efficiency of in vivo gene transfer using murine retroviral vectors is strain-dependent in mice. Hum. Gene Therapy 6, 1177–1183 (1995).

    Article  CAS  Google Scholar 

  26. Guerette, B., Asselin, I., Vilquin, J.T., Roy, R. & Tremblay, J.P. Lymphocyte infiltration following allo- and xenomyoblast transplantation in mdx mice. Muscle Nerve 18, 39–51 (1995).

    Article  CAS  Google Scholar 

  27. Vilquin, J.-T. et al. FK506 Immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer. Hum. Gene Ther. 6, 1391–1401 (1995).

    Article  CAS  Google Scholar 

  28. Yang, Y., Haecker, S.E., Su, Q. & Wilson, J.M. Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum. Mol. Genet. 5, 1703–1712 (1996).

    Article  CAS  Google Scholar 

  29. Mauro, A. Satellite cells of skeletal muscle. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    Article  CAS  Google Scholar 

  30. Konigsberg, I. The differentiation of cross-striated myofibrils in short-term cell culture. Exp. Cell Res. 21, 414–420 (1960).

    Article  CAS  Google Scholar 

  31. Richler, C. & Yaffe, D. The in vitro cultivation and differentiation capacities of myogenic cell lines. Dev. Biol. 23, 1–22 (1970).

    Article  CAS  Google Scholar 

  32. Hauschka, S.D. Clonal analysis of vertebrate myogenesis II. Environmental influences upon human muscle differentiation. Dev. Biol. 37, 329–344 (1974).

    Article  CAS  Google Scholar 

  33. Blau, H.M. & Webster, C. Isolation and characterization of human muscle cells. Proc. Natl. Acad. Sci. USA 78, 5623–5627 (1981).

    Article  CAS  Google Scholar 

  34. Rando, T.A. & Blau, H.M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J. Cell Biol. 125, 1275–1287 (1994).

    Article  CAS  Google Scholar 

  35. Barr, E. & Leiden, J. Systemic delivery of recombinant proteins by genetically modified myoblasts. Science 254, 1507–1509 (1991).

    Article  CAS  Google Scholar 

  36. Dhawan, J. . et al. Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science 254, 1509–1512 (1991).

    Article  CAS  Google Scholar 

  37. Law, P.K. et al. Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Lancet 336, 114–115 (1990).

    Article  CAS  Google Scholar 

  38. Gussoni, E. et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 356, 435–438 (1992).

    Article  CAS  Google Scholar 

  39. Huard, J. et al. Human myoblast transplantation: Preliminary results of 4 cases. Muscle Nerve 15, 550–560 (1992).

    Article  CAS  Google Scholar 

  40. Karpati, G. et al. Myoblast transfer in Duchenne muscular dystrophy. Ann. Neurol. 34, 8–17 (1993).

    Article  CAS  Google Scholar 

  41. Mendell, J.R. et al. Myoblast transfer in the treatment of Duchenne's muscular dystrophy. N. Engl. J. Med. 333, 832–838 (1995).

    Article  CAS  Google Scholar 

  42. Morandi, L. et al. Lack of mRNA and dystrophin expression in DMD patients three months after myoblast transfer. Neuromusc. Disord. 5, 291–295 (1995).

    Article  CAS  Google Scholar 

  43. Gussoni, E. et al. A method to co-detect introduced genes and their products in gene therapy protocols. Nature Biotechnol. 14, 1012–1016 (1996).

    Article  CAS  Google Scholar 

  44. Schultz, E., Jaryszack, D.L. & Valliere, C.R. Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8, 217–222 (1985).

    Article  CAS  Google Scholar 

  45. Grounds, M. The proliferation and fusion of myoblasts in vivo. Adv. Exp. Med. Biol. 280, 101–104 (1990).

    Article  CAS  Google Scholar 

  46. Hoffman, E.P., Morgan, J.E., Watkins, S.C. & Partridge, T.A. Somatic reversion/suppression of the mouse mdx phenotype in vivo. J. Neurol. Sci. 99, 9–25 (1990).

    Article  CAS  Google Scholar 

  47. Fanin, M. et al. Dystrophin-positive fibers in Duchenne dystrophy: Origin and correlation to clinical course. Muscle Nerve 18, 1115–1120 (1995).

    Article  CAS  Google Scholar 

  48. Pavlath, G.K., Rich, K., Webster, S.G. & Blau, H.M. Localization of muscle gene products in nuclear domains. Nature 337, 570–573 (1989).

    Article  CAS  Google Scholar 

  49. Ralston, E. & Hall, Z.W. Intracellular and surface distribution of a membrane protein (CD8) derived from a single nucleus in multinucleated myotubes. J. Cell Biol. 109, 2345–2352 (1989).

    Article  CAS  Google Scholar 

  50. Ralston, E. & Hall, Z.W. Transfer of a protein encoded by a single nucleus to nearby nuclei in multinucleated myotubes. Science 244, 1066–1069 (1989).

    Article  CAS  Google Scholar 

  51. Yoshida, M. & Ozawa, E. Glycoprotein complex anchoring dystrophin to sarcolemma. J. Biochem. 108, 748–752 (1990).

    Article  CAS  Google Scholar 

  52. Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    Article  CAS  Google Scholar 

  53. Roy, R. et al. Antibody formation after myoblast transplantation in Duchenne-dystrophic patients, donor HLA compatible. Transplant. Proc. 25, 995–997 (1993).

    CAS  PubMed  Google Scholar 

  54. Pegoraro, E. et al. Genetic and biochemical normalization in female carriers of Duchenne muscular dystrophy: Evidence for failure of dystrophin production in dystrophin-competent myonuclei. Neurology 45, 677–690 (1995).

    Article  CAS  Google Scholar 

  55. Webster, C., Pavlath, G.K., Parks, D.R., Walsh, F.S. & Blau, H.M. Isolation of human myoblasts with the fluorescence-activated cell sorter. Exp. Cell Res. 174, 252–265 (1988).

    Article  CAS  Google Scholar 

  56. Lichter, P. et al. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69 (1989).

    Article  Google Scholar 

  57. Landon, D.N. . in Skeletal Muscle Pathology. 1–87 (Churchill Livingstone, London, 1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gussoni, E., Blau, H. & Kunkel, L. The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 3, 970–977 (1997). https://doi.org/10.1038/nm0997-970

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0997-970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing