Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120

Abstract

Diabetes, a disease in which the body does not produce or use insulin properly, is a serious global health problem1,2,3. Gut polypeptides secreted in response to food intake, such as glucagon-like peptide-1 (GLP-1), are potent incretin hormones that enhance the glucose-dependent secretion of insulin from pancreatic beta cells4,5,6. Free fatty acids (FFAs) provide an important energy source and also act as signaling molecules in various cellular processes, including the secretion of gut incretin peptides7,8. Here we show that a G-protein-coupled receptor, GPR120, which is abundantly expressed in intestine, functions as a receptor for unsaturated long-chain FFAs. Furthermore, we show that the stimulation of GPR120 by FFAs promotes the secretion of GLP-1 in vitro and in vivo, and increases circulating insulin. Because GLP-1 is the most potent insulinotropic incretin9,10, our results indicate that GPR120-mediated GLP-1 secretion induced by dietary FFAs is important in the treatment of diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue distribution and signal transduction of Gpr120.
Figure 2: Long FFA–induced GLP-1 secretion and ERK activation in STC-1 cells.
Figure 3: Gpr120, but not Gpr40, mediates FFA-induced [Ca2+]i response and GLP-1 secretion.
Figure 4: Colocalization of GPR120 mRNA and GLP-1 in human colonic cells, and FFA-induced GLP-1 and insulin secretion in mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Gene Expression Omnibus

References

  1. Zimmet, P., Alberti, K.G. & Shaw, J. Global and societal implications of the diabetes epidemic. Nature 414, 782–787 (2001).

    Article  CAS  Google Scholar 

  2. Gadsby, R. Epidemiology of diabetes. Adv. Drug. Deliv. Rev. 54, 1165–1172 (2002).

    Article  CAS  Google Scholar 

  3. Jovanovic, L. & Gondos, B. Type 2 diabetes: the epidemic of the new millennium. Ann. Clin. Lab. Sci. 29, 33–42 (1999).

    CAS  PubMed  Google Scholar 

  4. Creutzfeldt, W. & Ebert, R. New developments in the incretin concept. Diabetologia 28, 565–573 (1985).

    Article  CAS  Google Scholar 

  5. Kieffer, T.J. & Habener, J.F. The glucagon-like peptides. Endocr. Rev. 20, 876–913 (1999).

    Article  CAS  Google Scholar 

  6. Kreymann, B., Williams, G., Ghatei, M.A. & Bloom, S.R. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 2, 1300–1304 (1987).

    Article  CAS  Google Scholar 

  7. Nunez, E.A. Biological complexity is under the 'strange attraction' of non-esterified fatty acids. Prostaglandins. Leukot. Essent. Fatty Acids 57, 107–110 (1997).

    Article  CAS  Google Scholar 

  8. Thomsen, C., Storm, H., Holst, J.J. & Hermansen, K. Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. Am. J. Clin. Nutr. 77, 605–611 (2003).

    Article  CAS  Google Scholar 

  9. MacDonald, P.E. et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51 Suppl 3, S434–S442 (2002).

    Article  CAS  Google Scholar 

  10. Drucker, D.J. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161–171 (2003).

    Article  CAS  Google Scholar 

  11. Fredriksson, R. et al. Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett. 554, 381–388 (2003).

    Article  CAS  Google Scholar 

  12. Tsao, P., Cao, T. & von Zastrow, M. Role of endocytosis in mediating downregulation of G-protein-coupled receptors. Trends. Pharmacol. Sci. 22, 91–96 (2001).

    Article  CAS  Google Scholar 

  13. Ding, G.J., et al. Characterlization and quantitation of NF-κB nuclear translocation induced by interleukin-1 and tumor necrosis factor-α. Development and use of a high capacity fluorescence cytometric system. J. Biol. Chem. 273, 28897–28905 (1998).

    Article  CAS  Google Scholar 

  14. Milligan, G., Marshall, F. & Rees, S. G16 as a universal G protein adapter: implications for agonist screening strategies. Trends. Pharmacol. Sci. 17, 235–237 (1996).

    Article  CAS  Google Scholar 

  15. Vilsboll, T., et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 88, 2706–2713. (2003).

    Article  CAS  Google Scholar 

  16. Holst, J.J. & Orskov, C. Incretin hormones--an update. Scand. J. Clin. Lab. Invest. Suppl. 234, 75–85 (2001).

    CAS  Google Scholar 

  17. Guimbaud, R. et al. Intraduodenal free fatty acids rather than triglycerides are responsible for the release of CCK in humans. Pancreas. 14, 76–82 (1997).

    Article  CAS  Google Scholar 

  18. Sidhu, S.S., Thompson, D.G., Warhurst, G., Case, R.M. & Benson, R.S. Fatty acid-induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC-1 and GLUTag. J. Physiol. 528, 165–176 (2000).

    Article  CAS  Google Scholar 

  19. Itoh, Y. et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422, 173–176 (2003).

    Article  CAS  Google Scholar 

  20. Cao, X. et al. Aberrant regulation of human intestinal proglucagon gene expression in the NCI-H716 cell line. Endocrinology 144, 2025–2033 (2003).

    Article  CAS  Google Scholar 

  21. Reimer, R.A. et al. A human cellular model for studying the regulation of glucagon-like peptide-1 secretion. Endocrinology 142, 4522–4528 (2001).

    Article  CAS  Google Scholar 

  22. Trogan, E. et al. Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice. Proc. Natl. Acad. Sci. USA 99, 2234–2239 (2002).

    Article  CAS  Google Scholar 

  23. Briscoe, C.P. et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 278, 11303–11311 (2003).

    Article  CAS  Google Scholar 

  24. Brown, A.J. et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    Article  CAS  Google Scholar 

  25. Nilsson, N.E., Kotarsky, K., Owman, C. & Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047–1052 (2003).

    Article  CAS  Google Scholar 

  26. Hirasawa, A., et al. Subtype-specific differences in subcellular localization of α1-adrenoceptors: chlorethylclonidine preferentially alkylates the accessible cell surface α1-adrenoceptors irrespective of the subtype. Mol. Pharmacol. 52, 764–770 (1997)

    Article  CAS  Google Scholar 

  27. Awaji, T. et al. Real-time optical monitoring of ligand-mediated internalization of alpha1b-adrenoceptor with green fluorescent protein. Mol. Endocrinol. 12, 1099–1111 (1998).

    CAS  PubMed  Google Scholar 

  28. Horie, K., Hirasawa, A. & Tsujimoto, G. The pharmacological profile of cloned and stably expressed alpha 1b-adrenoceptor in CHO cells. Eur. J. Pharmacol. 268, 399–407 (1994).

    Article  CAS  Google Scholar 

  29. Awaji, T., Hirasawa, A., Shirakawa, H., Tsujimoto, G., Miyazaki, S. Novel green fluorescent protein-based ratiometric indicators for monitoring pH in defined intracellular microdomains. Biochem. Biophys. Res. Commun. 289, 457–462 (2001).

    Article  CAS  Google Scholar 

  30. Gevrey, J.C., Cordier-Bussat, M., Nemoz-Gaillard, E., Chayvialle, J.A. & Abello, J. Co-requirement of cyclic AMP- and calcium-dependent protein kinases for transcriptional activation of cholecystokinin gene by protein hydrolysates. J. Biol. Chem. 277, 22407–22413 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Mine, T. Tanaka, Y. Kitagawa and S. Suzuki for their technical assistance. This study was performed through Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology, the Japanese Government (G.T.). S.K. and T.A. are supported by the 21st Century Center of Excellence Program “Knowledge Information Infrastructure for Genome Science.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gozoh Tsujimoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

pEC50s of fatty acids tested on HEK 293 cells stably expressing Gpr120-Gα16 (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirasawa, A., Tsumaya, K., Awaji, T. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11, 90–94 (2005). https://doi.org/10.1038/nm1168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing