Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental autoimmune encephalomyelitis repressed by microglial paralysis

A Corrigendum to this article was published on 01 April 2005

Abstract

Although microglial activation occurs in inflammatory, degenerative and neoplastic central nervous system (CNS) disorders, its role in pathogenesis is unclear. We studied this question by generating CD11b-HSVTK transgenic mice, which express herpes simplex thymidine kinase in macrophages and microglia. Ganciclovir treatment of organotypic brain slice cultures derived from CD11b-HSVTK mice abolished microglial release of nitrite, proinflammatory cytokines and chemokines. Systemic ganciclovir administration to CD11b-HSVTK mice elicited hematopoietic toxicity, which was prevented by transfer of wild-type bone marrow. In bone marrow chimeras, ganciclovir blocked microglial activation in the facial nucleus upon axotomy and repressed the development of experimental autoimmune encephalomyelitis. We conclude that microglial paralysis inhibits the development and maintenance of inflammatory CNS lesions. The microglial compartment thus provides a potential therapeutic target in inflammatory CNS disorders. These results validate CD11b-HSVTK mice as a tool to study the impact of microglial activation on CNS diseases in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of CD11b-HSVTK transgene and transgenic mice.
Figure 2: In vivo characterization of tg620 mice and FACS analysis of peripheral blood.
Figure 3: Microglial paralysis in tg620 mice.
Figure 4: Microglial paralysis represses clinical EAE in tg620chi mice.
Figure 5: Microglial paralysis represses EAE-associated inflammatory infiltrates in tg620chi mice.

Similar content being viewed by others

References

  1. Kreutzberg, G.W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318 (1996).

    Article  CAS  Google Scholar 

  2. Weiner, H.L. & Selkoe, D.J. Inflammation and therapeutic vaccination in CNS diseases. Nature 420, 879–884 (2002).

    Article  CAS  Google Scholar 

  3. Carson, M.J. Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis. Glia 40, 218–231 (2002).

    Article  Google Scholar 

  4. Becher, B., Prat, A. & Antel, J.P. Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia 29, 293–304 (2000).

    Article  CAS  Google Scholar 

  5. Ambrosini, E. & Aloisi, F. Chemokines and glial cells: a complex network in the central nervous system. Neurochem. Res. 29, 1017–1038 (2004).

    Article  CAS  Google Scholar 

  6. Ulvestad, E. et al. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J. Leukoc. Biol. 56, 732–740 (1994).

    Article  CAS  Google Scholar 

  7. Schwartz, M. & Moalem, G. Beneficial immune activity after CNS injury: prospects for vaccination. J. Neuroimmunol. 113, 185–192 (2001).

    Article  CAS  Google Scholar 

  8. Kerschensteiner, M., Stadelmann, C., Dechant, G., Wekerle, H. & Hohlfeld, R. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann. Neurol. 53, 292–304 (2003).

    Article  CAS  Google Scholar 

  9. Dziennis, S. et al. The CD11b promoter directs high-level expression of reporter genes in macrophages in transgenic mice [published erratum appears in Blood 1995 Apr 1;85(7):1983]. Blood 85, 319–329 (1995).

    CAS  PubMed  Google Scholar 

  10. Fyfe, J.A., Keller, P.M., Furman, P.A., Miller, R.L. & Elion, G.B. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J. Biol. Chem. 253, 8721–8727 (1978).

    CAS  PubMed  Google Scholar 

  11. Culver, K.W. et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550–1552 (1992).

    Article  CAS  Google Scholar 

  12. Bush, T.G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93, 189–201 (1998).

    Article  CAS  Google Scholar 

  13. Herraiz, M. et al. Liver failure caused by herpes simplex virus thymidine kinase plus ganciclovir therapy is associated with mitochondrial dysfunction and mitochondrial DNA depletion. Hum. Gene Ther. 14, 463–472 (2003).

    Article  CAS  Google Scholar 

  14. Braun, R.E. et al. Infertility in male transgenic mice: disruption of sperm development by HSV-tk expression in postmeiotic germ cells. Biol. Reprod. 43, 684–693 (1990).

    Article  CAS  Google Scholar 

  15. Fisher, R.C., Lovelock, J.D. & Scott, E.W. A critical role for PU.1 in homing and long-term engraftment by hematopoietic stem cells in the bone marrow. Blood 94, 1283–1290 (1999).

    CAS  PubMed  Google Scholar 

  16. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  17. Hickey, W.F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988).

    Article  CAS  Google Scholar 

  18. Eglitis, M.A. & Mezey, E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. USA 94, 4080–4085 (1997).

    Article  CAS  Google Scholar 

  19. Priller, J. et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 7, 1356–1361 (2001).

    Article  CAS  Google Scholar 

  20. Asheuer, M. et al. Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proc. Natl. Acad. Sci. USA 101, 3557–3562 (2004).

    Article  CAS  Google Scholar 

  21. Pedchenko, T.V. & LeVine, S.M. IL-6 deficiency causes enhanced pathology in Twitcher (globoid cell leukodystrophy) mice. Exp. Neurol. 158, 459–468 (1999).

    Article  CAS  Google Scholar 

  22. Raivich, G. et al. Immune surveillance in the injured nervous system: T-lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J. Neurosci. 18, 5804–5816 (1998).

    Article  CAS  Google Scholar 

  23. Sasaki, Y., Ohsawa, K., Kanazawa, H., Kohsaka, S. & Imai, Y. Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochem. Biophys. Res. Commun. 286, 292–297 (2001).

    Article  CAS  Google Scholar 

  24. Lassmann, H., Bruck, W. & Lucchinetti, C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol. Med. 7, 115–121 (2001).

    Article  CAS  Google Scholar 

  25. Youssef, S. et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420, 78–84 (2002).

    Article  CAS  Google Scholar 

  26. Steinman, L., Martin, R., Bernard, C., Conlon, P. & Oksenberg, J.R. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu. Rev. Neurosci. 25, 491–505 (2002).

    Article  CAS  Google Scholar 

  27. Tran, E.H., Hoekstra, K., van Rooijen, N., Dijkstra, C.D. & Owens, T. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J. Immunol. 161, 3767–3775 (1998).

    CAS  PubMed  Google Scholar 

  28. Martiney, J.A. et al. Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent. J. Immunol. 160, 5588–5595 (1998).

    CAS  PubMed  Google Scholar 

  29. Benveniste, E.N. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J. Mol. Med. 75, 165–173 (1997).

    Article  CAS  Google Scholar 

  30. Becher, B., Durell, B.G., Miga, A.V., Hickey, W.F. & Noelle, R.J. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J. Exp. Med. 193, 967–974 (2001).

    Article  CAS  Google Scholar 

  31. Becher, B., Durell, B.G. & Noelle, R.J. IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J. Clin. Invest. 112, 1186–1191 (2003).

    Article  CAS  Google Scholar 

  32. Willenborg, D.O., Staykova, M.A. & Cowden, W.B. Our shifting understanding of the role of nitric oxide in autoimmune encephalomyelitis: a review. J. Neuroimmunol. 100, 21–35 (1999).

    Article  CAS  Google Scholar 

  33. Flugel, A. et al. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14, 547–560 (2001).

    Article  CAS  Google Scholar 

  34. Ford, A.L., Goodsall, A.L., Hickey, W.F. & Sedgwick, J.D. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J. Immunol. 154, 4309–4321 (1995).

    CAS  PubMed  Google Scholar 

  35. Matyszak, M.K. et al. Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation. Eur. J. Immunol. 29, 3063–3076 (1999).

    Article  CAS  Google Scholar 

  36. Ekdahl, C.T., Claasen, J.H., Bonde, S., Kokaia, Z. & Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA 100, 13632–13637 (2003).

    Article  CAS  Google Scholar 

  37. Monje, M.L., Toda, H. & Palmer, T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    Article  CAS  Google Scholar 

  38. Marin-Teva, J.L. et al. Microglia promote the death of developing Purkinje cells. Neuron 41, 535–547 (2004).

    Article  CAS  Google Scholar 

  39. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  Google Scholar 

  40. Heppner, F.L. et al. Prevention of Scrapie Pathogenesis by Transgenic Expression of Anti-Prion Protein Antibodies. Science 294, 178–182 (2001).

    Article  CAS  Google Scholar 

  41. Black, M.E., Newcomb, T.G., Wilson, H.M. & Loeb, L.A. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc. Natl. Acad. Sci. USA 93, 3525–3529 (1996).

    Article  CAS  Google Scholar 

  42. Hailer, N.P., Heppner, F.L., Haas, D. & Nitsch, R. Astrocytic factors deactivate antigen presenting cells that invade the central nervous system. Brain Pathol. 8, 459–474 (1998).

    Article  CAS  Google Scholar 

  43. Heppner, F.L., Roth, K., Nitsch, R. & Hailer, N.P. Vitamin E induces ramification and downregulation of adhesion molecules in cultured microglial cells. Glia 22, 180–188 (1998).

    Article  CAS  Google Scholar 

  44. Heppner, F.L., Skutella, T., Hailer, N.P., Haas, D. & Nitsch, R. Activated microglial cells migrate towards sites of excitotoxic neuronal injury inside organotypic hippocampal slice cultures. Eur. J. Neurosci. 10, 3284–3290 (1998).

    Article  CAS  Google Scholar 

  45. Miranda, K.M., Espey, M.G. & Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5, 62–71 (2001).

    Article  CAS  Google Scholar 

  46. Ellison, A.R. & Bishop, J.O. Herpesvirus thymidine kinase transgenes that do not cause male sterility are aberrantly transcribed and translated in the testis. Biochim. Biophys. Acta 1442, 28–38 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.G. Tenen for providing Itgam-Thy1-hGH cDNA, T. Bush for supplying GFAP-HSVTK control brains, C. Weissmann for discussion, J. Weber, P. Schwarz, A. Schifferli, M. König for technical assistance and C. Sigurdson for critical comments on the manuscript. This work is supported by grants of the Bundesamt für Bildung und Wissenschaft (EU), the Swiss National Foundation, the US National Prion Research Program, and the National Center of Competence in Research (NCCR) on neural plasticity and repair to A.A. F.L.H. was supported by the Human Frontier Science Program (HFSP), the Stammbach and the Leopoldina foundations. M.G. is a fellow of the Roche Research Foundation of Switzerland. B.B. is a Harry Weaver Neuroscience Scholar of the US National Multiple Sclerosis Society (NMSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Aguzzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

GCV-mediated myelotoxicity of tg620 mice. (PDF 209 kb)

Supplementary Fig. 2

Intact blood-brain barrier of tg620chi mice. (PDF 1607 kb)

Supplementary Fig. 3

Reduced microglial numbers in tg620chi mice upon chronic GCV treatment. (PDF 56 kb)

Supplementary Fig. 4

GCV-mediated inhibition of microglial activation in brain slices of tg620 mice. (PDF 65 kb)

Supplementary Fig. 5

tg620 and wild-type mice exhibit similar EAE phenotype. (PDF 32 kb)

Supplementary Fig. 6

Encephalitogenic T cells of GCV-treated tg620chi mice are fully responsive upon MOG recall. (PDF 48 kb)

Supplementary Fig. 7

No obvious difference in microglial recruitment upon GCV treatment in MOG-immunized tg620chi mice. (PDF 71 kb)

Supplementary Table 1

GCV-mediated aplastic anemia of tg620 mice (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heppner, F., Greter, M., Marino, D. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11, 146–152 (2005). https://doi.org/10.1038/nm1177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing