Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy

Abstract

Vanishing white matter disease (VWM) is a heritable leukodystrophy linked to mutations in translation initiation factor 2B (eIF2B). Although the clinical course of this disease has been relatively well described, the cellular consequences of EIF2B mutations on neural cells are unknown. Here we have established cell cultures from the brain of an individual with VWM carrying mutations in subunit 5 of eIF2B (encoded by EIF2B5). Despite the extensive demyelination apparent in this VWM patient, normal-appearing oligodendrocytes were readily generated in vitro. In contrast, few GFAP-expressing (GFAP+) astrocytes were present in primary cultures, induction of astrocytes was severely compromised, and the few astrocytes generated showed abnormal morphologies and antigenic phenotypes. Lesions in vivo also lacked GFAP+ astrocytes. RNAi targeting of EIF2B5 severely compromised the induction of GFAP+ cells from normal human glial progenitors. This raises the possibility that a deficiency in astrocyte function may contribute to the loss of white matter in VWM leukodystrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VWM patient–derived CC cells express oligodendrocyte lineage markers.
Figure 2: Lineage marker–negative, VWM patient–derived VZ cultures are capable of generating neurons, oligodendrocytes and astrocytes.
Figure 3: VWM patient–derived astrocytes show an unusual morphology.
Figure 4: Antisense targeting of EIF2B5 in hGPC leads to an impaired generation of GFAP+ astrocytes.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. van der Knaap, M.S. et al. A new leukoencephalopathy with vanishing white matter. Neurology 48, 845–855 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Schiffmann, R. et al. Childhood ataxia with diffuse central nervous system hypomyelination. Ann. Neurol. 35, 331–340 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Hanefeld, F. et al. Diffuse white matter disease in three children: an encephalopathy with unique features on magnetic resonance imaging and proton magnetic resonance spectroscopy. Neuropediatrics 24, 244–248 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Fogli, A. et al. Cree leukoencephalopathy and CACH/VWM disease are allelic at the EIF2B5 locus. Ann. Neurol. 52, 506–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Fogli, A. et al. A severe variant of childhood ataxia with central hypomyelination/vanishing white matter leukoencephalopathy related to EIF21B5 mutation. Neurology 59, 1966–1968 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Leegwater, P.A. et al. Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter. Nat. Genet. 29, 383–388 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. van der Knaap, M.S. et al. Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann. Neurol. 51, 264–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Palmer, T.D. et al. Cell culture. Progenitor cells from human brain after death. Nature 411, 42–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Westerlund, U. et al. Stem cells from the adult human brain develop into functional neurons in culture. Exp. Cell. Res. 289, 378–383 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz, P.H. et al. Isolation and characterization of neural progenitor cells from post–mortem human cortex. J. Neurosci. Res. 74, 838–851 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Hertz, L., Peng, L. & Lai, J.C. Functional studies in cultured astrocytes. Methods 16, 293–310 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Yong, V.W., Kim, S.U., Kim, M.W. & Shin, D.H. Growth factors for human glial cells in culture. Glia 1, 113–123 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Raff, M.C., Abney, E.R., Cohen, J., Lindsay, R. & Noble, M. Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci. 3, 1289–1300 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kretzschmar, M., Liu, F., Hata, A., Doody, J. & Massague, J. The TGF–beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 11, 984–995 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Wong, K. et al. Foamy cells with oligodendroglial phenotype in childhood ataxia with diffuse central nervous system hypomyelination syndrome. Acta Neuropathol. (Berl.) 100, 635–646. (2000).

    Article  CAS  Google Scholar 

  16. Francalanci, P. et al. Fatal infantile leukodystrophy: a severe variant of CACH/VWM syndrome, allelic to chromosome 3q27. Neurology 57, 265–270 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Dietrich, J., Noble, M. & Mayer-Proschel, M. Characterization of A2B5+ glial precursor cells from cryopreserved human fetal brain progenitor cells. Glia 40, 65–77 (2002).

    Article  PubMed  Google Scholar 

  18. Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gomez, E. & Pavitt, G.D. Identification of domains and residues within the epsilon subunit of eukaryotic translation initiation factor 2B (eIF2Bepsilon) required for guanine nucleotide exchange reveals a novel activation function promoted by eIF2B complex formation. Mol. Cell. Biol. 20, 3965–3976 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anthony, T.G., Fabian, J.R., Kimball, S.R. & Jefferson, L.S. Identification of domains within the epsilon–subunit of the translation initiation factor eIF2B that are necessary for guanine nucleotide exchange activity and eIF2B holoprotein formation. Biochim. Biophys. Acta 1492, 56–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Asano, K., Krishnamoorthy, T., Phan, L., Pavitt, G.D. & Hinnebusch, A.G. Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase–activating and GDP–GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J. 18, 1673–1688 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fogli, A. et al. Decreased guanine nucleotide exchange factor activity in eIF2B–mutated patients. Eur. J. Hum. Genet. 12, 561–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. van der Knaap, M.S. et al. Phenotypic variation in leukoencephalopathy with vanishing white matter. Neurology 51, 540–547 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Van Haren, K., van der Voorn, J.P., Peterson, D.R., van der Knaap, M.S. & Powers, J.M. The life and death of oligodendrocytes in vanishing white matter disease. J. Neuropathol. Exp. Neurol. 63, 618–630 (2004).

    Article  PubMed  Google Scholar 

  25. Pekny, M. et al. Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J. 14, 1590–1598 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gomi, H. et al. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14, 29–41 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. McCall, M.A. et al. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc. Natl. Acad. Sci. USA 93, 6361–6366 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liedtke, W. et al. GFAP is necessary for the integrity of CNS white matter architecture and long–term maintenance of myelination. Neuron 17, 607–615 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Nawashiro, H., Messing, A., Azzam, N. & Brenner, M. Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury. Neuroreport 9, 1691–1696 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Nawashiro, H., Brenner, M., Fukui, S., Shima, K. & Hallenbeck, J.M. High susceptibility to cerebral ischemia in GFAP–null mice. J Cereb. Blood Flow Metab. 20, 1040–1044 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Pekny, M. et al. The impact of genetic removal of GFAP and/or vimentin on glutamine levels and transport of glucose and ascorbate in astrocytes. Neurochem. Res. 24, 1357–1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Xu, K., Malouf, A.T., Messing, A. & Silver, J. Glial fibrillary acidic protein is necessary for mature astrocytes to react to beta–amyloid. Glia 25, 390–403 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Brenner, M. et al. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat. Genet. 27, 117–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Gorospe, J.R. et al. Molecular findings in symptomatic and pre–symptomatic Alexander disease patients. Neurology 58, 1494–1500. (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez, D. et al. Infantile Alexander disease: spectrum of GFAP mutations and genotype–phenotype correlation. Am. J. Hum. Genet. 69, 1134–1140 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nedergaard, M., Ransom, B. & Goldman, S.A. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Windrem, M.S. et al. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat. Med. 10, 93–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Han, S.S., Liu, Y., Tyler–Polsz, C., Rao, M.S. & Fischer, I. Transplantation of glial–restricted precursor cells into the adult spinal cord: survival, glial–specific differentiation, and preferential migration in white matter. Glia 45, 1–16 (2004).

    Article  PubMed  Google Scholar 

  39. Herrera, J. et al. Embryonic–derived glial–restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo. Exp. Neurol. 171, 11–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. van der Knaap, M.S. Magnetic resonance in childhood white–matter disorders. Dev. Med. Child Neurol. 43, 705–712 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Bottenstein, J.E. & Sato, G.H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76, 514–517 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mayer-Proschel, M., Kalyani, A.J., Mujtaba, T. & Rao, M.S. Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19, 773–785 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Rao, M.S., Noble, M. & Mayer-Proschel, M. A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl. Acad. Sci. USA 95, 3996–4001 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rao, M.S. & Mayer–Proschel, M. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev. Biol. 188, 48–63. (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Gregori, N., Proschel, C., Noble, M. & Mayer–Proschel, M. The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: generation of bipotential oligodendrocyte–type–2 astrocyte progenitor cells and dorsal-ventral differences in GRP cell function. J. Neurosci. 22, 248–256 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Gomez, E., Mohammad, S.S. & Pavitt, G.D. Characterization of the minimal catalytic domain within eIF2B: the guanine-nucleotide exchange factor for translation initiation. EMBO J. 21, 5292–5301 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Powers for providing support and access to patient samples, H. Land for discussions and L. Silver for technical assistance. This work was supported by grants from the Children's Neurobiological Solutions Foundation (to M.M.-P. and M.N.), the Multiple Sclerosis Society of Canada (to M.M.-P. and M.N.), and the US National Institutes of Health (NS047411 to C.P., NS42820 to M.M.-P. and C.P., and HD39702 to M.N.). J.D. is a fellow of the Wilmot Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Pröschel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Paucity of GFAP+ astrocytes in demyelinating lesions of a CACH/VWM patient with known mutations in the translation initation factor subunit eIF2B5. (PDF 260 kb)

Supplementary Fig. 2

CACH/VWM disease cells are responsive to BMP-4. (PDF 207 kb)

Supplementary Fig. 3

Comparison of GFAP expression in cerebral white matter sections derived from patients with different underlying neurological diseases affecting white matter tracts. (PDF 327 kb)

Supplementary Fig. 4

RNAi inhibition of eIF2B5 expression. (PDF 89 kb)

Supplementary Table 1

Oligodeoxynucleotides used for the construction of RNAi expression plasmids targeting different regions of human eIF2B5 (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, J., Lacagnina, M., Gass, D. et al. EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy. Nat Med 11, 277–283 (2005). https://doi.org/10.1038/nm1195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing