Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice

Abstract

Alveolar cell apoptosis is involved in the pathogenesis of emphysema, a prevalent disease primarily caused by cigarette smoking. We report that ceramide, a second messenger lipid, is a crucial mediator of alveolar destruction in emphysema. Inhibition of enzymes controlling de novo ceramide synthesis prevented alveolar cell apoptosis, oxidative stress and emphysema caused by blockade of the vascular endothelial growth factor (VEGF) receptors in both rats and mice. Emphysema was reproduced with intratracheal instillation of ceramide in naive mice. Excessive ceramide triggers a feed-forward mechanism mediated by activation of secretory acid sphingomyelinase, as suggested by experiments with neutralizing ceramide antibody in mice and with acid sphingomyelinase–deficient fibroblasts. Concomitant augmentation of signaling initiated by a prosurvival metabolite, sphingosine-1-phosphate, prevented lung apoptosis, implying that a balance between ceramide and sphingosine-1-phosphate is required for maintenance of alveolar septal integrity. Finally, increased lung ceramides in individuals with smoking-induced emphysema suggests that ceramide upregulation may be a crucial pathogenic element and a promising target in this disease that currently lacks effective therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lung ceramide levels are increased by VEGFR blockade.
Figure 2: Inhibition of de novo ceramide synthesis prevents VEGFR blockade–induced emphysema.
Figure 3: Ceramide augmentation triggers lung apoptosis and emphysema.
Figure 4: Self-amplification of lung ceramide synthesis.
Figure 5: Increased lung ceramide in patients with emphysema.

Similar content being viewed by others

References

  1. The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis 132, 182–5. (1985).

  2. Shapiro, S.D. Vascular atrophy and VEGFR-2 signaling: old theories of pulmonary emphysema meet new data. J. Clin. Invest. 106, 1309–1310 (2000).

    Article  CAS  Google Scholar 

  3. Kasahara, Y. et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Invest. 106, 1311–1319 (2000).

    Article  CAS  Google Scholar 

  4. Tuder, R.M., Petrache, I., Elias, J.A., Voelkel, N.F. & Henson, P.M. Apoptosis and emphysema: the missing link. Am. J. Respir. Cell Mol. Biol. 28, 551–554 (2003).

    Article  CAS  Google Scholar 

  5. Tuder, R.M. et al. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell Mol. Biol. 29, 88–97 (2003).

    Article  CAS  Google Scholar 

  6. Rangasamy, T. et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J. Clin. Invest. 114, 1248–1259 (2004).

    Article  CAS  Google Scholar 

  7. Hannun, Y.A. & Obeid, L.M. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J. Biol. Chem. 277, 25847–25850 (2002).

    Article  CAS  Google Scholar 

  8. Reunanen, N. et al. Enhancement of fibroblast collagenase (matrix metalloproteinase-1) gene expression by ceramide is mediated by extracellular signal-regulated and stress-activated protein kinase pathways. J. Biol. Chem. 273, 5137–5145 (1998).

    Article  CAS  Google Scholar 

  9. Hannun, Y.A. & Luberto, C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 10, 73–80 (2000).

    Article  CAS  Google Scholar 

  10. Kolesnick, R. & Fuks, Z. Radiation and ceramide-induced apoptosis. Oncogene 22, 5897–5906 (2003).

    Article  CAS  Google Scholar 

  11. Luberto, C., Kraveka, J.M. & Hannun, Y.A. Ceramide regulation of apoptosis versus differentiation: a walk on a fine line. Lessons from neurobiology. Neurochem. Res. 27, 609–617 (2002).

    Article  CAS  Google Scholar 

  12. Zhang, Y. et al. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89, 63–72 (1997).

    Article  CAS  Google Scholar 

  13. Chalfant, C.E. et al. De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J. Biol. Chem. 277, 12587–12595 (2002).

    Article  CAS  Google Scholar 

  14. Heinrich, M. et al. Ceramide as an activator lipid of cathepsin D. Adv. Exp. Med. Biol. 477, 305–315 (2000).

    Article  CAS  Google Scholar 

  15. Gulbins, E. & Grassme, H. Ceramide and cell death receptor clustering. Biochim. Biophys. Acta 1585, 139–145 (2002).

    Article  CAS  Google Scholar 

  16. Siskind, L.J., Kolesnick, R.N. & Colombini, M. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J. Biol. Chem. 277, 26796–26803 (2002).

    Article  CAS  Google Scholar 

  17. Goggel, R. et al. PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat. Med. 10, 155–160 (2004).

    Article  Google Scholar 

  18. Cuvillier, O. et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803 (1996).

    Article  CAS  Google Scholar 

  19. Payne, S.G., Milstien, S. & Spiegel, S. Sphingosine-1-phosphate: dual messenger functions. FEBS Lett. 531, 54–57 (2002).

    Article  CAS  Google Scholar 

  20. Morita, Y. & Tilly, J.L. Sphingolipid regulation of female gonadal cell apoptosis. Ann. NY Acad. Sci. 905, 209–220 (2000).

    Article  CAS  Google Scholar 

  21. Kasahara, Y. et al. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am. J. Respir. Crit. Care Med. 163, 737–744 (2001).

    Article  CAS  Google Scholar 

  22. Norred, W.P., Voss, K.A., Riley, R.T. & Plattner, R.D. Fumonisin toxicity and metabolism studies at the USDA. Fumonisin toxicity and metabolism. Adv. Exp. Med. Biol. 392, 225–236 (1996).

    Article  CAS  Google Scholar 

  23. Peng, X. et al. Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am. J. Respir. Crit. Care Med. 169, 1245–1251 (2004).

    Article  Google Scholar 

  24. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  Google Scholar 

  25. Ravid, T. et al. Ceramide accumulation precedes caspase-3 activation during apoptosis of A549 human lung adenocarcinoma cells. Am. J. Physiol. Lung Cell Mol. Physiol. 284, L1082–L1092 (2003).

    Article  CAS  Google Scholar 

  26. Hautamaki, R.D., Kobayashi, D.K., Senior, R.M. & Shapiro, S.D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).

    Article  CAS  Google Scholar 

  27. Ogretmen, B. et al. Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J. Biol. Chem. 277, 12960–12969 (2002).

    Article  CAS  Google Scholar 

  28. Petrache, I. et al. Caspase-dependent cleavage of myosin light chain kinase (MLCK) is involved in TNF-alpha-mediated bovine pulmonary endothelial cell apoptosis. FASEB J. 17, 407–416 (2003).

    Article  CAS  Google Scholar 

  29. Soler, N. et al. Airway inflammation and bronchial microbial patterns in patients with stable chronic obstructive pulmonary disease. Eur. Respir. J. 14, 1015–1022 (1999).

    Article  CAS  Google Scholar 

  30. Slowik, M.R., De Luca, L.G., Min, W. & Pober, J.S. Ceramide is not a signal for tumor necrosis factor-induced gene expression but does cause programmed cell death in human vascular endothelial cells. Circ. Res. 79, 736–747 (1996).

    Article  CAS  Google Scholar 

  31. Kroesen, B.J. et al. BcR-induced apoptosis involves differential regulation of C16 and C24-ceramide formation and sphingolipid-dependent activation of the proteasome. J. Biol. Chem. 278, 14723–14731 (2003).

    Article  CAS  Google Scholar 

  32. Haimovitz-Friedman, A. et al. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J. Exp. Med. 186, 1831–1841 (1997).

    Article  CAS  Google Scholar 

  33. Taraseviciene-Stewart, L. et al. An animal model of autoimmune emphysema. Am. J. Respir. Crit. Care Med. 171, 734–742 (2005).

    Article  Google Scholar 

  34. Pfeiffer, A. et al. Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur. J. Immunol. 31, 3153–3164 (2001).

    Article  CAS  Google Scholar 

  35. Kolesnick, R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest. 110, 3–8 (2002).

    Article  CAS  Google Scholar 

  36. Chavakis, E. & Dimmeler, S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler. Thromb. Vasc. Biol. 22, 887–893 (2002).

    Article  CAS  Google Scholar 

  37. Pautz, A. et al. Cross-talk between nitric oxide and superoxide determines ceramide formation and apoptosis in glomerular cells. Kidney Int. 61, 790–796 (2002).

    Article  CAS  Google Scholar 

  38. Lavrentiadou, S.N. et al. Ceramide-mediated apoptosis in lung epithelial cells is regulated by glutathione. Am. J. Respir. Cell Mol. Biol. 25, 676–684 (2001).

    Article  CAS  Google Scholar 

  39. Horinouchi, K. et al. Acid sphingomyelinase deficient mice: a model of types A and B Niemann- Pick disease. Nat. Genet. 10, 288–293 (1995).

    Article  CAS  Google Scholar 

  40. Otterbach, B. & Stoffel, W. Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease). Cell 81, 1053–1061 (1995).

    Article  CAS  Google Scholar 

  41. Ikegami, M., Dhami, R. & Schuchman, E.H. Alveolar lipoproteinosis in an acid sphingomyelinase-deficient mouse model of Niemann-Pick disease. Am. J. Physiol. Lung Cell Mol. Physiol. 284, L518–L525 (2003).

    Article  CAS  Google Scholar 

  42. Fletcher, C. & Peto, R. The natural history of chronic airflow obstruction. Br. Med. J. 1, 1645–1648 (1977).

    Article  CAS  Google Scholar 

  43. Tilly, J.L. & Kolesnick, R.N. Sphingolipids, apoptosis, cancer treatments and the ovary: investigating a crime against female fertility. Biochim. Biophys. Acta 1585, 135–138 (2002).

    Article  CAS  Google Scholar 

  44. Tuder, R.M., Wood, K., Taraseviciene, L., Flores, S.C. & Voekel, N.F. Cigarette smoke extract decreases the expression of vascular endothelial growth factor by cultured cells and triggers apoptosis of pulmonary endothelial cells. Chest 117, 241S–242S (2000).

    Article  CAS  Google Scholar 

  45. Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Med. Sci. 37, 911–917 (1959).

    CAS  Google Scholar 

  46. Dobrowsky, R.T. & Kolesnick, R.N. Analysis of sphingomyelin and ceramide levels and the enzymes regulating their metabolism in response to cell stress. Methods Cell Biol. 66, 135–165 (2001).

    Article  CAS  Google Scholar 

  47. Perry, D.K., Bielawska, A. & Hannun, Y.A. Quantitative determination of ceramide using diglyceride kinase. Methods Enzymol. 312, 22–31 (2000).

    Article  CAS  Google Scholar 

  48. Tepper, A.D. & Van Blitterswijk, W.J. Ceramide mass analysis by normal-phase high-performance liquid chromatography. Methods Enzymol. 312, 16–22 (2000).

    Article  CAS  Google Scholar 

  49. Sullards, M.C. & Merrill, A.H., Jr. Analysis of sphingosine 1-phosphate, ceramides, and other bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Sci STKE 2001, PL1 (2001).

    CAS  PubMed  Google Scholar 

  50. Berdyshev, E.V., Gorshkova, I.A., Garcia, J.G.N., Natarajan, V. & Hubbard, W.C. Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography-tandem mass spectrometry. Anal. Biochem. 339, 129–136 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of L. Natarajan, S.I. Ramirez, J. Skirball (cell culture and caspase-3 activity assay) and D. Rau (HPLC). We thank D. Griffin who provided the acid sphingomyelinase–deficient human fibroblasts. We thank C. Cool for providing additional normal human lung samples, and A.M.K. Choi and J.G.N. Garcia for critically reading our manuscript. Funding for these studies is from the US National Institutes of Health grant K08 HL04396; American Thoracic Society/Alpha One Foundation Research Grant; and American Lung Association Research Grant (to I.P.); US National Institutes of Health grants RO1 HL71152 (to V.N.), 1S10 RR16798 (to W.C.H.) and RO1HL66554 (to R.M.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Petrache.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic representation of ceramide as an amplifying mediator in pulmonary emphysema based on the findings in the VEGFR blockade model. (PDF 118 kb)

Supplementary Fig. 2

VEGFR blockade rapidly induces apoptosis in the mouse lung. (PDF 101 kb)

Supplementary Fig. 3

De novo ceramide synthesis is necessary for the development of emphysema, preceding caspase activation. (PDF 122 kb)

Supplementary Fig. 4

Ceramide augmentation causes cell apoptosis and oxydative stress in the mouse lung. (PDF 216 kb)

Supplementary Fig. 5

ASMase regulates paracellular amplification of ceramide synthesis. (PDF 188 kb)

Supplementary Table 1

Clinical characteristics of patients who provided lung biopsy samples for ceramide analysis. (PDF 38 kb)

Supplementary Methods (PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrache, I., Natarajan, V., Zhen, L. et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med 11, 491–498 (2005). https://doi.org/10.1038/nm1238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing