Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Design and use of conditional MHC class I ligands

Abstract

Major histocompatibility complex (MHC) class I molecules associate with a variety of peptide ligands during biosynthesis and present these ligands on the cell surface for recognition by cytotoxic T cells. We have designed conditional MHC ligands that form stable complexes with MHC molecules but degrade on command, by exposure to a defined photostimulus. 'Empty MHC molecules' generated in this manner can be loaded with arrays of peptide ligands to determine MHC binding properties and to monitor antigen-specific T-cell responses in a high-throughput manner. We document the value of this approach by identifying cytotoxic T-cell epitopes within the H5N1 influenza A/Vietnam/1194/04 genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photocleavage strategy.
Figure 2: UV light–mediated peptide exchange.
Figure 3: T-cell staining with MHC exchange tetramers.
Figure 4: High-throughput screen of H5N1 T-cell epitopes.

Similar content being viewed by others

References

  1. Ljunggren, H.G. et al. Empty MHC class I molecules come out in the cold. Nature 346, 476–480 (1990).

    Article  CAS  Google Scholar 

  2. Schumacher, T.N. et al. Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro. Cell 62, 563–567 (1990).

    Article  CAS  Google Scholar 

  3. Fremont, D.H., Matsumura, M., Stura, E.A., Peterson, P.A. & Wilson, I.A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257, 919–927 (1992).

    Article  CAS  Google Scholar 

  4. Silver, M.L., Guo, H.C., Strominger, J.L. & Wiley, D.C. Atomic structure of a human MHC molecule presenting an influenza virus peptide. Nature 360, 367–369 (1992).

    Article  CAS  Google Scholar 

  5. Bouvier, M. & Wiley, D.C. Importance of peptide amino and carboxyl termini to the stability of MHC class I molecules. Science 265, 398–402 (1994).

    Article  CAS  Google Scholar 

  6. Schumacher, T.N. et al. Peptide selection by MHC class I molecules. Nature 350, 703–706 (1991).

    Article  CAS  Google Scholar 

  7. Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. & Rammensee, H.G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).

    Article  CAS  Google Scholar 

  8. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  Google Scholar 

  9. Soen, Y., Chen, D.S., Kraft, D.L., Davis, M.M. & Brown, P.O. Detection and characterization of cellular immune responses using peptide-MHC microarrays. PLoS Biol. 1, E65 (2003).

    Article  Google Scholar 

  10. Stone, J.D., Demkowicz, W.E., Jr & Stern, L.J. HLA-restricted epitope identification and detection of functional T cell responses by using MHC-peptide and costimulatory microarrays. Proc. Natl. Acad. Sci. USA 102, 3744–3749 (2005).

    Article  CAS  Google Scholar 

  11. Yee, C., Savage, P.A., Lee, P.P., Davis, M.M. & Greenberg, P.D. Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J. Immunol. 162, 2227–2234 (1999).

    CAS  PubMed  Google Scholar 

  12. Falkenburg, J.H., van de Corput, L., Marijt, E.W. & Willemze, R. Minor histocompatibility antigens in human stem cell transplantation. Exp. Hematol. 31, 743–751 (2003).

    Article  CAS  Google Scholar 

  13. Moss, P. & Rickinson, A. Cellular immunotherapy for viral infection after HSC transplantation. Nat. Rev. Immunol. 5, 9–20 (2005).

    Article  CAS  Google Scholar 

  14. Peggs, K.S. et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362, 1375–1377 (2003).

    Article  Google Scholar 

  15. Rooney, C.M. et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345, 9–13 (1995).

    Article  CAS  Google Scholar 

  16. Walter, E.A. et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333, 1038–1044 (1995).

    Article  CAS  Google Scholar 

  17. Cobbold, M. et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J. Exp. Med. 202, 379–386 (2005).

    Article  CAS  Google Scholar 

  18. Bosques, C.J. & Imperiali, B. Photolytic control of peptide self-assembly. J. Am. Chem. Soc. 125, 7530–7531 (2003).

    Article  CAS  Google Scholar 

  19. Wieboldt, R. et al. Synthesis and characterization of photolabile o-nitrobenzyl derivatives of urea. J. Org. Chem. 67, 8827–8831 (2002).

    Article  CAS  Google Scholar 

  20. Garboczi, D.N., Hung, D.T. & Wiley, D.C. HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl. Acad. Sci. USA 89, 3429–3433 (1992).

    Article  CAS  Google Scholar 

  21. Sulyok, G.A. et al. Solid-phase synthesis of a nonpeptide RGD mimetic library: new selective αvβ3 integrin antagonists. J. Med. Chem. 44, 1938–1950 (2001).

    Article  CAS  Google Scholar 

  22. Rammensee, H.G., Bachmann, J., Emmerich, N.N., Bachor, O.A. & Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999).

    Article  CAS  Google Scholar 

  23. Valmori, D. et al. Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J. Immunol. 160, 1750–1758 (1998).

    CAS  PubMed  Google Scholar 

  24. Greten, T.F. et al. Direct visualization of antigen-specific T cells: HTLV-1 Tax11–19- specific CD8+ T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc. Natl. Acad. Sci. USA 95, 7568–7573 (1998).

    Article  CAS  Google Scholar 

  25. Oelke, M. & Schneck, J.P. HLA-Ig-based artificial antigen-presenting cells: setting the terms of engagement. Clin. Immunol. 110, 243–251 (2004).

    Article  CAS  Google Scholar 

  26. Firat, H. et al. H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur. J. Immunol. 29, 3112–3121 (1999).

    Article  CAS  Google Scholar 

  27. Bins, A. et al. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat. Med. 11, 899–904 (2005).

    Article  CAS  Google Scholar 

  28. Choi, E.M., Palmowski, M., Chen, J. & Cerundolo, V. The use of chimeric A2K(b) tetramers to monitor HLA A2 immune responses in HLA A2 transgenic mice. J. Immunol. Methods 268, 35–41 (2002).

    Article  CAS  Google Scholar 

  29. Dudley, M.E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  Google Scholar 

  30. Schlichting, I. et al. Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345, 309–315 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank V. Cerundolo (Weatherall Institute of Molecular Medicine) for the A2Kb expression construct and F. Lemonnier (Institut Pasteur) for HLA-A2.1-transgenic mice. We would like to thank A. Pfauth and F. van Diepen for flow cytometry assistance, I. Blonk for help in generation of H5N1 DNA vaccines and H. Hilkmann for peptide synthesis. This work was funded by Netherlands Organization for Scientific Research (NWO) Pioneer (to T.S.) and Vidi (to H.O.) grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huib Ovaa or Ton N M Schumacher.

Ethics declarations

Competing interests

The technology described in this manuscript is the subject of a patent application. Based on Netherlands Cancer Institute policy on management of intellectual property, Mireille Toebes, Huib Ovaa and Ton N. M. Schumacher would be entitled to a portion of received royalty income in case of future licensing.

Supplementary information

Supplementary Fig. 1

Conditional ligands for 2.1 and H-2Db. (PDF 739 kb)

Supplementary Fig. 2

Conditional peptide-MHC complexes are sensitive to UV light. (PDF 621 kb)

Supplementary Fig. 3

Sensitivity and specificity of MHC exchange tetramers. (PDF 925 kb)

Supplementary Fig. 4

Detection of antigen-specific T cells with MHC-immunoglobulin dimers and MHC tetramers. (PDF 3140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toebes, M., Coccoris, M., Bins, A. et al. Design and use of conditional MHC class I ligands. Nat Med 12, 246–251 (2006). https://doi.org/10.1038/nm1360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing