Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis

Abstract

Sepsis is a complex, incompletely understood and often fatal disorder, typically accompanied by hypotension, that is considered to represent a dysregulated host response to infection. Neurotensin (NT) is a 13-amino-acid peptide that, among its multiple effects, induces hypotension. We find that intraperitoneal and plasma concentrations of NT are increased in mice after severe cecal ligation and puncture (CLP), a model of sepsis, and that mice treated with a pharmacological antagonist of NT, or NT-deficient mice, show reduced mortality during severe CLP. In mice, mast cells can degrade NT and reduce NT-induced hypotension and CLP-associated mortality, and optimal expression of these effects requires mast cell expression of neurotensin receptor 1 and neurolysin. These findings show that NT contributes to sepsis-related mortality in mice during severe CLP and that mast cells can lower NT concentrations, and suggest that mast cell–dependent reduction in NT levels contributes to the ability of mast cells to enhance survival after CLP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NT levels are increased and contribute to mortality after CLP in mice.
Figure 2: Evidence that NT can contribute to mortality after CLP in wild-type or KitW/W-v MC-deficient mice.
Figure 3: MCs reduce peritoneal NT concentrations and NT-induced hypotension.
Figure 4: NLN contributes to the ability of MCs to reduce amount of NT and NT-induced hypotension.
Figure 5: MCs can degrade NT in the absence of extensive degranulation.
Figure 6: MC expression of Ntsr1 is required for optimal MC-dependent reduction of NT-induced hypotension and enhancement of survival after CLP.

Similar content being viewed by others

References

  1. Martin, G.S., Mannino, D.M., Eaton, S. & Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546–1554 (2003).

    Article  Google Scholar 

  2. Angus, D.C. & Wax, R.S. Epidemiology of sepsis: an update. Crit. Care Med. 29, S109–S116 (2001).

    Article  CAS  Google Scholar 

  3. Cohen, J. The immunopathogenesis of sepsis. Nature 420, 885–891 (2002).

    Article  CAS  Google Scholar 

  4. Riedemann, N.C., Guo, R.F. & Ward, P.A. The enigma of sepsis. J. Clin. Invest. 112, 460–467 (2003).

    Article  CAS  Google Scholar 

  5. Reinhart, K., Meisner, M. & Brunkhorst, F.M. Markers for sepsis diagnosis: what is useful? Crit. Care Clin. 22, 503–19 ix–x (2006).

    Article  CAS  Google Scholar 

  6. Patel, G.P., Gurka, D.P. & Balk, R.A. New treatment strategies for severe sepsis and septic shock. Curr. Opin. Crit. Care 9, 390–396 (2003).

    Article  Google Scholar 

  7. Vincent, J.L., de Carvalho, F.B. & De Backer, D. Management of septic shock. Ann. Med. 34, 606–613 (2002).

    Article  CAS  Google Scholar 

  8. Tyler-McMahon, B.M., Boules, M. & Richelson, E. Neurotensin: peptide for the next millennium. Regul. Pept. 93, 125–136 (2000).

    Article  CAS  Google Scholar 

  9. Remaury, A. et al. Targeted inactivation of the neurotensin type 1 receptor reveals its role in body temperature control and feeding behavior but not in analgesia. Brain Res. 953, 63–72 (2002).

    Article  CAS  Google Scholar 

  10. Maeno, H. et al. Comparison of mice deficient in the high- or low-affinity neurotensin receptors, Ntsr1 or Ntsr2, reveals a novel function for Ntsr2 in thermal nociception. Brain Res. 998, 122–129 (2004).

    Article  CAS  Google Scholar 

  11. Mazella, J. et al. The 100-kDa neurotensin receptor is gp95/sortilin, a non–G protein–coupled receptor. J. Biol. Chem. 273, 26273–26276 (1998).

    Article  CAS  Google Scholar 

  12. Rioux, F., Kerouac, R., Quirion, R. & St-Pierre, S. Mechanisms of the cardiovascular effects of neurotensin. Ann. NY Acad. Sci. 400, 56–74 (1982).

    Article  CAS  Google Scholar 

  13. Grocott-Mason, R.M. & Shah, A.M. Cardiac dysfunction in sepsis: new theories and clinical implications. Intensive Care Med. 24, 286–295 (1998).

    Article  CAS  Google Scholar 

  14. Baker, C.C., Chaudry, I.H., Gaines, H.O. & Baue, A.E. Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 94, 331–335 (1983).

    CAS  PubMed  Google Scholar 

  15. Prodeus, A.P., Zhou, X., Maurer, M., Galli, S.J. & Carroll, M.C. Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 390, 172–175 (1997).

    Article  CAS  Google Scholar 

  16. Supajatura, V. et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest. 109, 1351–1359 (2002).

    Article  CAS  Google Scholar 

  17. Maurer, M. et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature 432, 512–516 (2004).

    Article  CAS  Google Scholar 

  18. Malaviya, R., Gao, Z., Thankavel, K., van der Merwe, P.A. & Abraham, S.N. The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc. Natl. Acad. Sci. USA 96, 8110–8115 (1999).

    Article  CAS  Google Scholar 

  19. Echtenacher, B., Mannel, D.N. & Hultner, L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381, 75–77 (1996).

    Article  CAS  Google Scholar 

  20. Maurer, M. et al. The c-kit ligand, stem cell factor, can enhance innate immunity through effects on mast cells. J. Exp. Med. 188, 2343–2348 (1998).

    Article  CAS  Google Scholar 

  21. Thakurdas, S.M. et al. The mast cell–restricted tryptase mMCP-6 has a critical immunoprotective role in bacterial infections. J. Biol. Chem. 282, 20809–20815 (2007).

    Article  CAS  Google Scholar 

  22. Cochrane, D.E., Carraway, R.E., Boucher, W. & Feldberg, R.S. Rapid degradation of neurotensin by stimulated rat mast cells. Peptides 12, 1187–1194 (1991).

    Article  CAS  Google Scholar 

  23. Goldstein, S.M., Leong, J. & Bunnett, N.W. Human mast cell proteases hydrolyze neurotensin, kinetensin and Leu5-enkephalin. Peptides 12, 995–1000 (1991).

    Article  CAS  Google Scholar 

  24. Dobner, P.R., Fadel, J., Deitemeyer, N., Carraway, R.E. & Deutch, A.Y. Neurotensin-deficient mice show altered responses to antipsychotic drugs. Proc. Natl. Acad. Sci. USA 98, 8048–8053 (2001).

    Article  CAS  Google Scholar 

  25. Kurose, M. & Saeki, K. Histamine release induced by neurotensin from rat peritoneal mast cells. Eur. J. Pharmacol. 76, 129–136 (1981).

    Article  CAS  Google Scholar 

  26. Miller, L.A., Cochrane, D.E., Feldberg, R.S. & Carraway, R.E. Inhibition of neurotensin-stimulated mast cell secretion and carboxypeptidase A activity by the peptide inhibitor of carboxypeptidase A and neurotensin-receptor antagonist SR 48692. Int. Arch. Allergy Immunol. 116, 147–153 (1998).

    Article  CAS  Google Scholar 

  27. Nakano, T. et al. Fate of bone marrow–derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J. Exp. Med. 162, 1025–1043 (1985).

    Article  CAS  Google Scholar 

  28. Gully, D. et al. Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J. Pharmacol. Exp. Ther. 280, 802–812 (1997).

    CAS  PubMed  Google Scholar 

  29. Millican, P.E., Kenny, A.J. & Turner, A.J. Purification and properties of a neurotensin-degrading endopeptidase from pig brain. Biochem. J. 276, 583–591 (1991).

    Article  CAS  Google Scholar 

  30. Barelli, H., Dive, V., Yiotakis, A., Vincent, J.P. & Checler, F. Potent inhibition of endopeptidase 24.16 and endopeptidase 24.15 by the phosphonamide peptide N-(phenylethylphosphonyl)-Gly-l-Pro-l-aminohexanoic acid. Biochem. J. 287, 621–625 (1992).

    Article  CAS  Google Scholar 

  31. Powers, J.C. et al. Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Biochemistry 24, 2048–2058 (1985).

    Article  CAS  Google Scholar 

  32. Wilk, S. & Orlowski, M. Inhibition of rabbit brain prolyl endopeptidase by n-benzyloxycarbonyl-prolyl-prolinal, a transition state aldehyde inhibitor. J. Neurochem. 41, 69–75 (1983).

    Article  CAS  Google Scholar 

  33. Tchougounova, E., Pejler, G. & Abrink, M. The chymase, mouse mast cell protease 4, constitutes the major chymotrypsin-like activity in peritoneum and ear tissue. A role for mouse mast cell protease 4 in thrombin regulation and fibronectin turnover. J. Exp. Med. 198, 423–431 (2003).

    Article  CAS  Google Scholar 

  34. Shrimpton, C.N., Smith, A.I. & Lew, R.A. Soluble metalloendopeptidases and neuroendocrine signaling. Endocr. Rev. 23, 647–664 (2002).

    Article  CAS  Google Scholar 

  35. Dauch, P., Vincent, J.P. & Checler, F. Specific inhibition of endopeptidase 24.16 by dipeptides. Eur. J. Biochem. 202, 269–276 (1991).

    Article  CAS  Google Scholar 

  36. Feyerabend, T.B. et al. Loss of histochemical identity in mast cells lacking carboxypeptidase A. Mol. Cell. Biol. 25, 6199–6210 (2005).

    Article  CAS  Google Scholar 

  37. Feldberg, R.S. et al. Evidence for a neurotensin receptor in rat serosal mast cells. Inflamm. Res. 47, 245–250 (1998).

    Article  CAS  Google Scholar 

  38. Quirion, R., Rioux, F., Regoli, D. & St-Pierre, S. Compound 48/80 inhibits neurotensin-induced hypotension in rats. Life Sci. 27, 1889–1895 (1980).

    Article  CAS  Google Scholar 

  39. Schaeffer, P. et al. Human umbilical vein endothelial cells express high affinity neurotensin receptors coupled to intracellular calcium release. J. Biol. Chem. 270, 3409–3413 (1995).

    Article  CAS  Google Scholar 

  40. Schaeffer, P. et al. Neurotensin induces the release of prostacyclin from human umbilical vein endothelial cells in vitro and increases plasma prostacyclin levels in the rat. Eur. J. Pharmacol. 323, 215–221 (1997).

    Article  CAS  Google Scholar 

  41. Norman, M.U., Reeve, S.B., Dive, V., Smith, A.I. & Lew, R.A. Endopeptidases 3.4.24.15 and 24.16 in endothelial cells: potential role in vasoactive peptide metabolism. Am. J. Physiol. Heart Circ. Physiol. 284, H1978–H1984 (2003).

    Article  CAS  Google Scholar 

  42. Serafin, W.E., Dayton, E.T., Gravallese, P.M., Austen, K.F. & Stevens, R.L. Carboxypeptidase A in mouse mast cells. Identification, characterization, and use as a differentiation marker. J. Immunol. 139, 3771–3776 (1987).

    CAS  PubMed  Google Scholar 

  43. Woodbury, R.G., Everitt, M.T. & Neurath, H. Mast cell proteases. Methods Enzymol. 80 Pt C 588–609 (1981).

    Article  CAS  Google Scholar 

  44. Schwartz, L.B., Metcalfe, D.D., Miller, J.S., Earl, H. & Sullivan, T. Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N. Engl. J. Med. 316, 1622–1626 (1987).

    Article  CAS  Google Scholar 

  45. Fox, C.C., Dvorak, A.M., MacGlashan, D.W., Jr & Lichtenstein, L.M. Histamine-containing cells in human peritoneal fluid. J. Immunol. 132, 2177–2179 (1984).

    CAS  PubMed  Google Scholar 

  46. Bienenstock, J. The mucosal immunologic network. Ann. Allergy 53, 535–540 (1984).

    CAS  PubMed  Google Scholar 

  47. Metcalfe, D.D. Mast cell mediators with emphasis on intestinal mast cells. Ann. Allergy 53, 563–575 (1984).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Xu and D. Lepard for technical assistance, M. Krupa-Plonowska and G. O'Riordan for their assistance with the collection of human blood samples, A. Patterson and R. Agrawal for the use of equipment to measure blood pressure and J. Kalesnikoff for critical reading of the manuscript. We thank B. Vincent (Institut de Pharmacologie Moleculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France) for providing antibodies against NLN, M. Gurish (Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts) for providing antibodies to mMCP-4 and mMCP-5, R. Carraway (University of Massachusetts Medical School, Worcester, Massachusetts) for providing antibodies to Ntsr1, V. Dive (Commissariat a L'Ennergie Atomique, Saclay, France) for providing phosphodiepryl-03, a NLN inhibitor that can be used with living cells, S. Wilk (Mount Sinai School of Medicine, New York) for providing CFp-Ala-Ala-Phe-pAB, L. Van Parijs (Massachusetts Institute of Technology) for providing pLentiLox 3.7 (pLL3.7), D. Gully (Sanofi-Synthelabo Recherche, Tolouse Cedex, France) for providing SR142948A and Amgen for the gifts of rat rSCF, human rSCF164 and human rIL-6. This work was supported by United States Public Health Science Grants (to S.J.G. and C.-C.C.), and by a fellowship from Deutsche Forschungsgemeinschaft (to M.M.).

Author information

Authors and Affiliations

Authors

Contributions

A.M.P., C.-C.C., T.N., E.J.R., P.R.D., J.D.F., R.G.P., M.T. and S.J.G. designed research; A.M.P., C.-C.C., T.N., M.M., E.J.R., S.Z. and U.M.M. performed research; A.M.P., C.-C.C., T.N., E.J.R., P.R.D., E.W., K.W., M.A., G.P., R.G.P., M.T. and S.J.G. analyzed data; A.M.P. and S.J.G. wrote the manuscript and C.-C.C., T.N., M.M., E.J.R., P.R.D., E.W., K.W., S.Z., U.M.M., J.D.F., M.A., G.P., R.G.P. and M.T. contributed to the revision and approval of the manuscript.

Corresponding author

Correspondence to Stephen J Galli.

Ethics declarations

Competing interests

Some authors of this manuscript (A.M.P., M.T. and S.J.G.) have filed a US patent entitled “Neurotensin as a marker and therapeutic target for sepsis” (patent 11/875,710). If issued, this patent will be assigned to Stanford University.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–10, Supplementary Table 1 and Supplementary Methods (PDF 572 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piliponsky, A., Chen, CC., Nishimura, T. et al. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nat Med 14, 392–398 (2008). https://doi.org/10.1038/nm1738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing