Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simian immunodeficiency virus–induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut

Abstract

Salmonella typhimurium causes a localized enteric infection in immunocompetent individuals, whereas HIV-infected individuals develop a life-threatening bacteremia. Here we show that simian immunodeficiency virus (SIV) infection results in depletion of T helper type 17 (TH17) cells in the ileal mucosa of rhesus macaques, thereby impairing mucosal barrier functions to S. typhimurium dissemination. In SIV-negative macaques, the gene expression profile induced by S. typhimurium in ligated ileal loops was dominated by TH17 responses, including the expression of interleukin-17 (IL-17) and IL-22. TH17 cells were markedly depleted in SIV-infected rhesus macaques, resulting in blunted TH17 responses to S. typhimurium infection and increased bacterial dissemination. IL-17 receptor–deficient mice showed increased systemic dissemination of S. typhimurium from the gut, suggesting that IL-17 deficiency causes defects in mucosal barrier function. We conclude that SIV infection impairs the IL-17 axis, an arm of the mucosal immune response preventing systemic microbial dissemination from the gastrointestinal tract.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene expression profiling of the host response to S. typhimurium infection.
Figure 2: Cytokine expression elicited by S. typhimurium in SIV-infected (n = 4) and SIV-negative control macaques (n = 4) 5 h after infection.
Figure 3: Kinetics of lymphocyte depletion and viral replication in SIV-infected macaques compared to naive controls.
Figure 4: Analysis of lamina propria T lymphocytes.
Figure 5: Bacterial translocation from the intestinal mucosa to internal organs in rhesus macaques and mice.
Figure 6: Host responses elicited 48 h after S. typhimurium infection in the cecal mucosa of C57BL/6 mice or Il17ra−/− mice.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Zhang, S. et al. Molecular pathogenesis of Salmonella enterica serotype typhimurium–induced diarrhea. Infect. Immun. 71, 1–12 (2003).

    Article  CAS  Google Scholar 

  2. Hohmann, E.L. Nontyphoidal salmonellosis. Clin. Infect. Dis. 32, 263–269 (2001).

    Article  CAS  Google Scholar 

  3. Gordon, M.A. et al. Bacteraemia and mortality among adult medical admissions in Malawi-predominance of non-typhi salmonellae and Streptococcus pneumoniae. J. Infect. 42, 44–49 (2001).

    Article  CAS  Google Scholar 

  4. Alausa, K.O. et al. Septicaemia in the tropics. A prospective epidemiological study of 146 patients with a high case fatality rate. Scand. J. Infect. Dis. 9, 181–185 (1977).

    Article  CAS  Google Scholar 

  5. Kankwatira, A.M., Mwafulirwa, G.A. & Gordon, M.A. Non-typhoidal salmonella bacteraemia—an under-recognized feature of AIDS in African adults. Trop. Doct. 34, 198–200 (2004).

    Article  Google Scholar 

  6. Gordon, M.A. et al. Non-typhoidal salmonella bacteraemia among HIV-infected Malawian adults: high mortality and frequent recrudescence. AIDS 16, 1633–1641 (2002).

    Article  Google Scholar 

  7. Zhang, S. et al. The Salmonella enterica serotype typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect. Immun. 70, 3843–3855 (2002).

    Article  CAS  Google Scholar 

  8. Reis, B.P. et al. The attenuated sopB mutant of Salmonella enterica serovar typhimurium has the same tissue distribution and host chemokine response as the wild type in bovine Peyer's patches. Vet. Microbiol. 97, 269–277 (2003).

    Article  CAS  Google Scholar 

  9. Santos, R.L., Zhang, S., Tsolis, R.M., Bäumler, A.J. & Adams, L.G. Morphologic and molecular characterization of Salmonella typhimurium infection in neonatal calves. Vet. Pathol. 39, 200–215 (2002).

    Article  CAS  Google Scholar 

  10. Nau, G.J., Schlesinger, A., Richmond, J.F. & Young, R.A. Cumulative Toll-like receptor activation in human macrophages treated with whole bacteria. J. Immunol. 170, 5203–5209 (2003).

    Article  CAS  Google Scholar 

  11. Kent, T.H., Formal, S.B. & Labrec, E.H. Salmonella gastroenteritis in rhesus monkeys. Arch. Pathol. 82, 272–279 (1966).

    CAS  PubMed  Google Scholar 

  12. Daniel, M.D. et al. Simian models for AIDS. Cancer Detect. Prev. Suppl. 1, 501–507 (1987).

    CAS  PubMed  Google Scholar 

  13. Ziesche, E., Bachmann, M., Kleinert, H., Pfeilschifter, J. & Muhl, H. The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. J. Biol. Chem. 282, 16006–16015 (2007).

    Article  CAS  Google Scholar 

  14. Shen, F., Ruddy, M.J., Plamondon, P. & Gaffen, S.L. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17– and TNF-α–induced genes in bone cells. J. Leukoc. Biol. 77, 388–399 (2005).

    Article  CAS  Google Scholar 

  15. Kao, C.Y. et al. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-κB-dependent signaling pathway. J. Immunol. 175, 6676–6685 (2005).

    Article  CAS  Google Scholar 

  16. Laan, M. et al. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J. Immunol. 162, 2347–2352 (1999).

    CAS  PubMed  Google Scholar 

  17. Ogawa, A., Andoh, A., Araki, Y., Bamba, T. & Fujiyama, Y. Neutralization of interleukin-17 aggravates dextran sulfate sodium–induced colitis in mice. Clin. Immunol. 110, 55–62 (2004).

    Article  CAS  Google Scholar 

  18. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by TH17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  Google Scholar 

  19. Harrington, L.E. et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  20. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  21. Zeng, H. et al. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J. Immunol. 171, 3668–3674 (2003).

    Article  CAS  Google Scholar 

  22. Thamlikitkul, V., Dhiraputra, C., Paisarnsinsup, T. & Chareandee, C. Non-typhoidal Salmonella bacteraemia: clinical features and risk factors. Trop. Med. Int. Health 1, 443–448 (1996).

    Article  CAS  Google Scholar 

  23. Sankaran, S. et al. Rapid onset of intestinal epithelial barrier dysfunction in primary human immunodeficiency virus infection is driven by an imbalance between immune response and mucosal repair and regeneration. J. Virol. 82, 538–545 (2008).

    Article  CAS  Google Scholar 

  24. Heise, C., Miller, C.J., Lackner, A. & Dandekar, S. Primary acute simian immunodeficiency virus infection of intestinal lymphoid tissue is associated with gastrointestinal dysfunction. J. Infect. Dis. 169, 1116–1120 (1994).

    Article  CAS  Google Scholar 

  25. Mehandru, S. et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 200, 761–770 (2004).

    Article  CAS  Google Scholar 

  26. Smit-McBride, Z., Mattapallil, J.J., McChesney, M., Ferrick, D. & Dandekar, S. Gastrointestinal T lymphocytes retain high potential for cytokine responses but have severe CD4+ T-cell depletion at all stages of simian immunodeficiency virus infection compared to peripheral lymphocytes. J. Virol. 72, 6646–6656 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Veazey, R.S. et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280, 427–431 (1998).

    Article  CAS  Google Scholar 

  28. Mattapallil, J.J. et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434, 1093–1097 (2005).

    Article  CAS  Google Scholar 

  29. Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2839–2858 (2003).

    Article  CAS  Google Scholar 

  30. Raffatellu, M. et al. The capsule-encoding viaB locus reduces IL-17 expression and mucosal innate responses in the bovine intestinal mucosa during infection with Salmonella enterica serotype typhi. Infect. Immun. 75, 4342–4350 (2007).

    Article  CAS  Google Scholar 

  31. Happel, K.I. et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J. Exp. Med. 202, 761–769 (2005).

    Article  CAS  Google Scholar 

  32. Happel, K.I. et al. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J. Immunol. 170, 4432–4436 (2003).

    Article  CAS  Google Scholar 

  33. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23–induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  Google Scholar 

  34. Umemura, M. et al. IL-17–mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J. Immunol. 178, 3786–3796 (2007).

    Article  CAS  Google Scholar 

  35. Bernstein, L.J., Krieger, B.Z., Novick, B., Sicklick, M.J. & Rubinstein, A. Bacterial infection in the acquired immunodeficiency syndrome of children. Pediatr. Infect. Dis. 4, 472–475 (1985).

    Article  CAS  Google Scholar 

  36. Eng, R.H., Bishburg, E., Smith, S.M., Geller, H. & Kapila, R. Bacteremia and fungemia in patients with acquired immune deficiency syndrome. Am. J. Clin. Pathol. 86, 105–107 (1986).

    Article  CAS  Google Scholar 

  37. Gilks, C.F. et al. Life-threatening bacteraemia in HIV-1 seropositive adults admitted to hospital in Nairobi, Kenya. Lancet 336, 545–549 (1990).

    Article  CAS  Google Scholar 

  38. Brenchley, J.M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).

    Article  CAS  Google Scholar 

  39. Kao, C.Y. et al. IL-17 markedly up-regulates β-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. J. Immunol. 173, 3482–3491 (2004).

    Article  CAS  Google Scholar 

  40. Brand, S. et al. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G827–G838 (2006).

    Article  CAS  Google Scholar 

  41. Schwartz, S., Beaulieu, J.F. & Ruemmele, F.M. Interleukin-17 is a potent immuno-modulator and regulator of normal human intestinal epithelial cell growth. Biochem. Biophys. Res. Commun. 337, 505–509 (2005).

    Article  CAS  Google Scholar 

  42. Andoh, A. et al. Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology 129, 969–984 (2005).

    Article  CAS  Google Scholar 

  43. Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony–stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    Article  CAS  Google Scholar 

  44. Coffey, M.J., Phare, S.M., George, S., Peters-Golden, M. & Kazanjian, P.H. Granulocyte colony–stimulating factor administration to HIV-infected subjects augments reduced leukotriene synthesis and anticryptococcal activity in neutrophils. J. Clin. Invest. 102, 663–670 (1998).

    Article  CAS  Google Scholar 

  45. Pitrak, D.L. Neutrophil deficiency and dysfunction in HIV-infected patients. Am. J. Health Syst. Pharm. 56 Suppl 5, S9–S16 (1999).

    Article  Google Scholar 

  46. George, S. et al. Neutrophils from AIDS patients treated with granulocyte colony–stimulating factor demonstrate enhanced killing of Mycobacterium avium. J. Infect. Dis. 178, 1530–1533 (1998).

    Article  CAS  Google Scholar 

  47. Pitrak, D.L. Filgrastim treatment of HIV-infected patients improves neutrophil function. AIDS 13 Suppl 2, S25–S30 (1999).

    CAS  PubMed  Google Scholar 

  48. Karim, M., Khan, W., Farooqi, B. & Malik, I. Bacterial isolates in neutropenic febrile patients. J. Pak. Med. Assoc. 41, 35–37 (1991).

    CAS  PubMed  Google Scholar 

  49. George, M.D., Sankaran, S., Reay, E., Gelli, A.C. & Dandekar, S. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection. Virology 312, 84–94 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Bevins and R. Tsolis for helpful suggestions to improve the manuscript. We would like to thank E. Reay and L. Hirst for their invaluable help in coordinating the macaque studies and Taconic Corporation for providing Il17ra−/− mice for this study.

Work in A.J.B.'s laboratory was supported by US Public Health Service grants AI040124, AI044170 and AI065534. Work in S.D.'s laboratory was supported by US Public Health Service grants DK43183, DK61297 and AI43274. T.A.P. and R.L.S. were supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil. R.L.S. was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil. I.G. was supported by Public Health Service grant AI06055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas J Bäumler.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raffatellu, M., Santos, R., Verhoeven, D. et al. Simian immunodeficiency virus–induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med 14, 421–428 (2008). https://doi.org/10.1038/nm1743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing