Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1

Abstract

The therapeutic potential of placental growth factor (PlGF) and its receptor Flt1 in angiogenesis is poorly understood. Here, we report that PlGF stimulated angiogenesis and collateral growth in ischemic heart and limb with at least a comparable efficiency to vascular endothelial growth factor (VEGF). An antibody against Flt1 suppressed neovascularization in tumors and ischemic retina, and angiogenesis and inflammatory joint destruction in autoimmune arthritis. Anti-Flt1 also reduced atherosclerotic plaque growth and vulnerability, but the atheroprotective effect was not attributable to reduced plaque neovascularization. Inhibition of VEGF receptor Flk1 did not affect arthritis or atherosclerosis, indicating that inhibition of Flk1-driven angiogenesis alone was not sufficient to halt disease progression. The anti-inflammatory effects of anti-Flt1 were attributable to reduced mobilization of bone marrow–derived myeloid progenitors into the peripheral blood; impaired infiltration of Flt1-expressing leukocytes in inflamed tissues; and defective activation of myeloid cells. Thus, PlGF and Flt1 constitute potential candidates for therapeutic modulation of angiogenesis and inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic angiogenesis and arteriogenesis with PlGF in the ischemic myocardium and limb.
Figure 2: PlGF stimulates, whereas anti-Flt1 inhibits vessel growth.
Figure 3: Anti-Flt1 mAb inhibits inflammation but not angiogenesis in atherosclerotic plaques.
Figure 4: Anti-Flt1, but not anti-Flk1, inhibits arthritic joint destruction.

Similar content being viewed by others

References

  1. Ferrara, N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol. Cell. Physiol. 280, C1358–C1366 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Post, M.J., Laham, R., Sellke, F.W. & Simons, M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res. 49, 522–531 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Isner, J.M. Myocardial gene therapy. Nature 415, 234–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Veikkola, T., Karkkainen, M., Claesson-Welsh, L. & Alitalo, K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 60, 203–212 (2000).

    CAS  PubMed  Google Scholar 

  6. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci. USA 95, 9349–9354 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shibuya, M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct. Funct. 26, 25–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Persico, M.G., Vincenti, V. & DiPalma, T. Structure, expression and receptor-binding properties of placenta growth factor (PlGF). Curr. Top. Microbiol. Immunol. 237, 31–40 (1999).

    CAS  PubMed  Google Scholar 

  9. Fong, G.H., Rossant, J., Gertsenstein, M. & Breitman, M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Park, J.E., Chen, H.H., Winer, J., Houck, K.A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25646–25654 (1994).

    CAS  PubMed  Google Scholar 

  11. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med. 7, 575–583 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hiratsuka, S. et al. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res. 61, 1207–1213 (2001).

    CAS  PubMed  Google Scholar 

  13. Weng, D.E. & Usman, N. Angiozyme: a novel angiogenesis inhibitor. Curr. Oncol. Rep. 3, 141–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Ishida, A. et al. Expression of vascular endothelial growth factor receptors in smooth muscle cells. J. Cell. Physiol. 188, 359–368 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 6, 389–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. van Royen, N. et al. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc. Res. 49, 543–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101, 40–50 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoefer, I.E., van Royen, N., Buschmann, I.R., Piek, J.J. & Schaper, W. Time course of arteriogenesis following femoral artery occlusion in the rabbit. Cardiovasc. Res. 49, 609–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Pettersson, A. et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab. Invest. 80, 99–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Dvorak, H.F., Dvorak, A.M., Manseau, E.J., Wiberg, L. & Churchill, W.H. Fibrin gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibroplasia in guinea pigs Role of cellular immunity, myofibroblasts, microvascular damage, and infarction in line 1 tumor regression. J. Natl. Cancer Inst. 62, 1459–1472 (1979).

    CAS  PubMed  Google Scholar 

  21. McLeod, D.S. et al. Localization of VEGF receptor-2 (KDR/Flk-1) and effects of blocking it in oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 43, 474–482 (2002).

    PubMed  Google Scholar 

  22. Celletti, F.L. et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature Med. 7, 425–429 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Moulton, K.S. Plaque angiogenesis and atherosclerosis. Curr. Atheroscler. Rep. 3, 225–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, D.M. & Weinblatt, M.E. Rheumatoid arthritis. Lancet 358, 903–911 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Weber, A.J. & De Bandt, M. Angiogenesis: general mechanisms and implications for rheumatoid arthritis. Joint Bone Spine 67, 366–383 (2000).

    CAS  PubMed  Google Scholar 

  26. Miotla, J., Maciewicz, R., Kendrew, J., Feldmann, M. & Paleolog, E. Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab. Invest. 80, 1195–1205 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Sone, H. et al. Neutralization of vascular endothelial growth factor prevents collagen-induced arthritis and ameliorates established disease in mice. Biochem. Biophys. Res. Commun. 281, 562–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Courtenay, J.S., Dallman, M.J., Dayan, A.D., Martin, A. & Mosedale, B. Immunisation against heterologous type II collagen induces arthritis in mice. Nature 283, 666–668 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. Folkman, J. Angiogenesis-dependent diseases. Semin. Oncol. 28, 536–542 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Bottomley, M.J. et al. Placenta growth factor (PlGF) induces vascular endothelial growth factor (VEGF) secretion from mononuclear cells and is co-expressed with VEGF in synovial fluid. Clin. Exp. Immunol. 119, 182–188 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Riessen, R., Kearney, M., Lawler, J. & Isner, J.M. Immunolocalization of thrombospondin-1 in human atherosclerotic and restenotic arteries. Am. Heart J. 135, 357–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Carmeliet, P. VEGF gene therapy: stimulating angiogenesis or angioma-genesis?. Nature Med. 6, 1102–1103 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Lazarous, D.F. et al. Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial. J. Am. Coll. Cardiol. 36, 1239–1244 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nature Med. 8, advance online publication, 1 July 2002 (doi:10.1038/nm740).

  36. Sawano, A. et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97, 785–791 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Clauss, M. Functions of the VEGF receptor-1 (FLT-1) in the vasculature. Trends Cardiovasc. Med. 8, 241–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Brenchley, P.E. Angiogenesis in inflammatory joint disease: a target for therapeutic intervention. Clin. Exp. Immunol. 121, 426–429 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Libby, P. What have we learned about the biology of atherosclerosis? The role of inflammation. Am. J. Cardiol. 88, 3J–6J (2001).

    CAS  PubMed  Google Scholar 

  40. Lutgens, E. et al. Both early and delayed anti-CD40L antibody treatment induces a stable plaque phenotype. Proc. Natl. Acad. Sci. USA 97, 7464–7469 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Simons, M. et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 102, E73–E86 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Witte, L. et al. Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev. 17, 155–161 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Luttun, A. et al. Lack of plasminogen activator inhibitor-1 promotes growth and abnormal matrix remodeling of advanced atherosclerotic plaques in apolipoprotein-deficient mice. Arterioscler. Thromb. Vasc. Biol. 22, 499–505 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Matthys, P. et al. Enhanced autoimmune arthritis in IFN-γ receptor-deficient mice is conditioned by mycobacteria in Freund's adjuvant and by increased expansion of Mac-1+ myeloid cells. J. Immunol. 163, 3503–3510 (1999).

    CAS  PubMed  Google Scholar 

  45. Matthys, P. et al. Anti-IL-12 antibody prevents the development and progression of collagen-induced arthritis in IFN-γ receptor-deficient mice. Eur. J. Immunol. 28, 2143–2151 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Priller, J. et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nature Med. 7, 1356–1361 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Couffinhal, T. et al. Mouse model of angiogenesis. Am. J. Pathol. 152, 1667–1679 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsumoto, K., Ishihara, K., Tanaka, K., Inoue, K. & Fushiki, T. An adjustable-current swimming pool for the evaluation of endurance capacity of mice. J. Appl. Physiol. 81, 1843–1849 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5, 495–502 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Bouché, K. Vandevelde, Y. Wing Man, I. Vanlinthout, M. De Mol, K. Maris, B. Vanwetswinkel, A. Manderveld, B. Hermans, P. Van Wesemael, S. Jansen, W. Martens, A. Vandenhoeck, S. Terclavers, S. Wyns, W. Landuyt and S. Torrekens for assistance. This work was supported in part by the European Union (Biomed BMH4-CT98-3380), Actie Levenslijn (#7.0019.98), FWO (G012500 and G032401) and a KUL/OT grant (TBA/00/27). A.L. and V.C. are FWO research fellows. M.T. is an IWT research fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

The anti-Flt1 monoclonal antibody was generated by ImClone Systems Inc. Y.W., F.L., A.H., P.B. and D. Hicklin are employed by ImClone. D.C. is employed by ThrombX; the center for Transgene Technology as received support from ThrombX for the research program evaluating the therapeutic potential of PlGF for heart and limb ischemia.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luttun, A., Tjwa, M., Moons, L. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8, 831–840 (2002). https://doi.org/10.1038/nm731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing