Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A futile metabolic cycle activated in adipocytes by antidiabetic agents

Abstract

Thiazolidinediones (TZDs) are effective therapies for type 2 diabetes, which has reached epidemic proportions in industrialized societies. TZD treatment reduces circulating free fatty acids (FFAs), which oppose insulin actions in skeletal muscle and other insulin target tissues. Here we report that TZDs, acting as ligands for the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-γ, markedly induce adipocyte glycerol kinase (GyK) gene expression. This is surprising, as standard textbooks indicate that adipocytes lack GyK and thereby avoid futile cycles of triglyceride breakdown and resynthesis from glycerol and FFAs. By inducing GyK, TZDs markedly stimulate glycerol incorporation into triglyceride and reduce FFA secretion from adipocytes. The 'futile' fuel cycle resulting from expression of GyK in adipocytes is thus a novel mechanism contributing to reduced FFA levels and perhaps insulin sensitization by antidiabetic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TZDs increase GyK expression in adipocytes.
Figure 2: Ciglitazone induces GyK expression in ob/ob mice, lean mice, rats and human primary adipocytes.
Figure 3: Rosiglitazone robustly increases glycerol incorporation into TG in adipocytes.
Figure 4: Rosiglitazone treatment markedly diminishes fatty-acid release from adipocytes, as does GyK overexpression.
Figure 5: Model for the effects of TZD treatment on physiology of lipid storage and mobilization in adipocytes.

Similar content being viewed by others

References

  1. Kopelman, P.G. Obesity as a medical problem. Nature 404, 635–643 (2000).

    Article  CAS  Google Scholar 

  2. Flier, J.S. The adipocyte: Storage depot or node on the energy information superhighway? Cell 80, 15–18 (1995).

    Article  CAS  Google Scholar 

  3. Trayhurn, P. & Beattie, J.H. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 60, 329–339 (2001).

    Article  CAS  Google Scholar 

  4. Steppan, C.M. & Lazar, M.A. Resistin and obesity-associated insulin resistance. Trends Endocrinol. Metab. 13, 18–23 (2002).

    Article  CAS  Google Scholar 

  5. Boden, G. Pathogenesis of type 2 diabetes. Insulin resistance. Endocrinol. Metab. Clin. North Am. 30, 801–815 (2001).

    Article  CAS  Google Scholar 

  6. Roden, M. et al. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 49, 701–707 (2000).

    Article  CAS  Google Scholar 

  7. Griffin, M.E. et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48, 1270–1274 (1999).

    Article  CAS  Google Scholar 

  8. Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.I. & Spiegelman, B.M. mPPAR-γ2: Tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234 (1994).

    Article  CAS  Google Scholar 

  9. Chawla, A., Schwarz, E.J., Dimaculangan, D.D. & Lazar, M.A. Peroxisome proliferator-activated receptor γ (PPAR-γ): Adipose predominant expression and induction early in adipocyte differentiation. Endocrinology 135, 798–800 (1994).

    Article  CAS  Google Scholar 

  10. Barak, Y. et al. PPAR-γ is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585–595 (1999).

    Article  CAS  Google Scholar 

  11. Rosen, E.D. et al. PPAR-γ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999).

    Article  CAS  Google Scholar 

  12. Tontonoz, P., Hu, E., Devine, J., Beale, E.G. & Spiegelman, B.M. PPAR- γ 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol. Cell. Biol. 15, 351–357 (1995).

    Article  CAS  Google Scholar 

  13. Mandrup, S. & Lane, M.D. Regulating adipogenesis. J. Biol. Chem. 272, 5367–5370 (1997).

    Article  CAS  Google Scholar 

  14. Rosen, E.D. et al. C/EBPα induces adipogenesis through PPAR-γ: a unified pathway. Genes Dev. (in the press).

  15. Yu, K. et al. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J. Biol. Chem. 270, 23975–23983 (1995).

    Article  CAS  Google Scholar 

  16. Forman, B.M. et al. 15-deoxy, delta 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR-γ. Cell 83, 803–812 (1995).

    Article  CAS  Google Scholar 

  17. Kliewer, S.A. et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83, 813–819 (1995).

    Article  CAS  Google Scholar 

  18. Lehmann, J.M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for the nuclear peroxisome proliferator-activated receptor γ (PPAR-γ). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  Google Scholar 

  19. Mauvais-Jarvis, F., Andreelli, F., Hanaire-Broutin, H., Charbonnel, B. & Girard, J. Therapeutic perspectives for type 2 diabetes mellitus: molecular and clinical insights. Diabetes Metab. 27, 415–23 (2001).

    CAS  PubMed  Google Scholar 

  20. Zhang, B. et al. Down-regulation of the expression of the obese gene by an antidiabetic thiazolidinedione in Zucker diabetic fatty rats and db/db mice. J. Biol. Chem. 271, 9455–9459 (1996).

    Article  CAS  Google Scholar 

  21. Kallen, C.B. & Lazar, M.A. Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA 93, 5793–5796 (1996).

    Article  CAS  Google Scholar 

  22. DeVos, P. et al. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor γ. J. Clin. Invest. 98, 1004–1009 (1996).

    Article  CAS  Google Scholar 

  23. Maeda, N. et al. PPAR-γ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50, 2094–2099 (2001).

    Article  CAS  Google Scholar 

  24. Steppan, C.M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    Article  CAS  Google Scholar 

  25. Stumvoll, M. & Haring, H.U. Glitazones: Clinical effects and molecular mechanisms. Ann Med 34, 217–24 (2002).

    Article  CAS  Google Scholar 

  26. Martin, G., Schoonjans, K., Lefebvre, A.M., Staels, B. & Auwerx, J. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPAR-α and PPAR-γ activators. J. Biol. Chem. 272, 28210–28217 (1997).

    Article  CAS  Google Scholar 

  27. Nagy, L., Tontonoz, P., Alvarez, J.G., Chen, H. & Evans, R.M. Oxidized LDL regulates macrophage gene expression through activation of PPAR-γ. Cell 93, 229–240 (1998).

    Article  CAS  Google Scholar 

  28. Steinberg, D., Vaughan, M. & Margolis, S. Studies of triacylglyceride biosynthesis in homogenates of adipose tissue. J. Biol. Chem. 236, 1631–1637 (1961).

    CAS  Google Scholar 

  29. Jequier, E. & Tappy, L. Regulation of body weight in humans. Physiol. Rev. 79, 451–80 (1999).

    Article  CAS  Google Scholar 

  30. Matthews, C.K. & van Holde, K.E. Metabolic coordination, metabolic control, and signal transduction. in Biochemistry (eds. Matthews, C.K. & vanHolde, K.E.) 819–859 (Benjamin/Cummings, Menlo Park, 1996).

    Google Scholar 

  31. Li, Y. & Lazar, M.A. Differential gene regulation by PPAR-γ agonist and constitutively active PPAR-γ. Mol. Endocrinol. 16, 1040–1048 (2002).

    CAS  PubMed  Google Scholar 

  32. Camp, H.S., Chaudhry, A. & Leff, T. A novel potent antagonist of peroxisome proliferator-activated receptor γ blocks adipocyte differentiation but does not revert the phenotype of terminally differentiated adipocytes. Endocrinology 142, 3207–3213 (2001).

    Article  CAS  Google Scholar 

  33. Kliewer, S.A. et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl. Acad. Sci. USA 94, 4318–4323 (1997).

    Article  CAS  Google Scholar 

  34. Ibrahimi, A. et al. Evidence for a common mechanism of action for fatty acids and thiazolidinedione antidiabetic agents on gene expression in preadipose cells. Mol. Pharmacol. 46, 1070–1076 (1994).

    CAS  PubMed  Google Scholar 

  35. Mukherjee, R. et al. A selective peroxisome proliferator-activated receptor γ modulator blocks adipocyte differentiation but stimulates glucose uptake in 3T3-L1 adipocytes. Mol. Endocrinol. 14, 1425–1433 (2000).

    CAS  PubMed  Google Scholar 

  36. Schoonjans, K. et al. PPAR-α and PPAR-γ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 15, 5336–48 (1996).

    Article  CAS  Google Scholar 

  37. Noel, R.J., Antinozzi, P.A., McGarry, J.D. & Newgard, C.B. Engineering of glycerol-stimulated insulin secretion in islet beta cells. Differential metabolic fates of glucose and glycerol provide insight into mechanisms of stimulus-secretion coupling. J. Biol. Chem. 272, 18621–7 (1997).

    Article  CAS  Google Scholar 

  38. Kishida, K. et al. Enhancement of the aquaporin adipose gene expression by a peroxisome proliferator-activated receptor γ. J. Biol. Chem. 276, 48572–48579 (2001).

    Article  CAS  Google Scholar 

  39. Krusynska, Y.T. Normal metabolism: the physiology of fuel homeostasis. in Textbook of Diabetes (eds. Pickup, J. & Williams, G.) 11.1–11.37 (Blackwell Science, Oxford, 1997).

    Google Scholar 

  40. Felig, P. & Bergman, M. Physiology of fuel metabolism. in Endocrinology and Metabolism (eds. Felig, P., Baxter, J.D. & Frohman, L.A.) 1107–1156 (McGraw-Hill, New York, 1995).

    Google Scholar 

  41. Souza, S.C., Yamamoto, M.T., Franciosa, M.D., Lien, P. & Greenberg, A.S. BRL 49653 blocks the lipolytic actions of tumor necrosis factor-α: A potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes 47, 691–695 (1998).

    Article  CAS  Google Scholar 

  42. Gaudet, D. et al. Glycerol as a correlate of impaired glucose tolerance: dissection of a complex system by use of a simple genetic trait. Am. J. Hum. Genet. 66, 1558–1568 (2000).

    Article  CAS  Google Scholar 

  43. Huq, A.H., Lovell, R.S., Ou, C.N., Beaudet, A.L. & Craigen, W.J. X-linked glycerol kinase deficiency in the mouse leads to growth retardation, altered fat metabolism, autonomous glucocorticoid secretion and neonatal death. Hum. Mol. Genet. 6, 1803–1809 (1997).

    Article  CAS  Google Scholar 

  44. Kaplan, M.L. & Leveille, G.A. Development of lipogenesis and insulin sensitivity in tissues of the ob/ob mouse. Am. J. Physiol. 240, E101–107 (1981).

    CAS  PubMed  Google Scholar 

  45. Air, E.L. et al. Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nature Med. 8, 179–183 (2002).

    Article  CAS  Google Scholar 

  46. Ruan, H. & Pownall, H.J. Overexpression of 1-acyl-glycerol-3-phosphate acyltransferase-α enhances lipid storage in cellular models of adipose tissue and skeletal muscle. Diabetes 50, 233–240 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Camp and D. Owens for the gift of PD068235; T. Willson for GW7845; W. Yin for help with the GyK assay; Y. Qi and R. Ahima for assistance with animal experiments; and M. Birnbaum for helpful discussions and critical reading of the manuscript. This work was supported by NIH grant DK49780 (to M.A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell A. Lazar.

Ethics declarations

Competing interests

M.A.L received unrestricted research support from GlaxoSmithKline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, HP., Li, Y., Jensen, M. et al. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med 8, 1122–1128 (2002). https://doi.org/10.1038/nm780

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing