Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells

An Erratum to this article was published on 01 April 2003

A Corrigendum to this article was published on 01 April 2003

Abstract

Epstein-Barr virus (EBV) initially enters the body through the oropharyngeal mucosa and subsequently infects B lymphocytes through their CD21 (CR2) complement receptor. Mechanisms of EBV entry into and release from epithelial cells are poorly understood. To study EBV infection in mucosal oropharyngeal epithelial cells, we established human polarized tongue and pharyngeal epithelial cells in culture. We show that EBV enters these cells through three CD21-independent pathways: (i) by direct cell-to-cell contact of apical cell membranes with EBV-infected lymphocytes; (ii) by entry of cell-free virions through basolateral membranes, mediated in part through an interaction between b1 or α5β1 integrins and the EBV BMRF-2 protein; and (iii) after initial infection, by virus spread directly across lateral membranes to adjacent epithelial cells. Release of progeny virions from polarized cells occurs from both their apical and basolateral membranes. These data indicate that multiple approaches to prevention of epithelial infection with EBV will be necessary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of oropharyngeal epithelial cell polarity in vitro.
Figure 2: EBV attachment to polarized oropharyngeal epithelial cells.
Figure 3: EBV entry into polarized oropharyngeal epithelial cells.
Figure 4: Role of cell surface integrins in EBV infection of oropharyngeal epithelial cells.
Figure 5: Cell-to-cell spread of EBV across lateral membranes of Detroitsort cells.

Similar content being viewed by others

References

  1. Rickinson, A.B. & Kieff, E. Epstein-Barr virus. In Fields Virology (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 2575–2627 (Lippincott-Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  2. Tanner, J., Weis, J., Fearon, D., Whang, Y. & Kieff, E. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 50, 203–213 (1987).

    Article  CAS  Google Scholar 

  3. Fingeroth, J.D. et al. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. Natl. Acad. Sci. USA 81, 4510–4514 (1984).

    Article  CAS  Google Scholar 

  4. Molesworth, S.J., Lake, C.M., Borza, C.M., Turk, S.M. & Hutt-Fletcher, L.M. Epstein-Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells. J. Virol. 74, 6324–6332 (2000).

    Article  CAS  Google Scholar 

  5. Wang, X. & Hutt-Fletcher, L.M. Epstein-Barr virus lacking glycoprotein gp42 can bind to B cells but is not able to infect. J. Virol. 72, 158–163 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, X., Kenyon, W.J., Li, Q., Mullberg, J. & Hutt-Fletcher, L.M. Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J. Virol. 72, 5552–5558 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, Q. et al. Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J. Virol. 71, 4657–4662 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Haan, K.M., Kwok, W.W., Longnecker, R. & Speck, P. Epstein-Barr virus entry utilizing HLA-DP or HLA-DQ as a coreceptor. J. Virol. 74, 2451–2454 (2000).

    Article  CAS  Google Scholar 

  9. Borza, C.M. & Hutt-Fletcher, L.M. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat. Med. 8, 594–599 (2002).

    Article  CAS  Google Scholar 

  10. Greenspan, J.S. et al. Replication of Epstein-Barr virus within the epithelial cells of oral “hairy” leukoplakia, an AIDS-associated lesion. N. Engl. J. Med. 313, 1564–1571 (1985).

    Article  CAS  Google Scholar 

  11. Sixbey, J.W., Nedrud, J.G., Raab-Traub, N., Hanes, R.A. & Pagano, J.S. Epstein-Barr virus replication in oropharyngeal epithelial cells. N. Engl. J. Med. 310, 1225–1230 (1984).

    Article  CAS  Google Scholar 

  12. Lemon, S.M., Hutt, L.M., Shaw, J.E., Li, J.L. & Pagano, J.S. Replication of EBV in epithelial cells during infectious mononucleosis. Nature 268, 268–270 (1977).

    Article  CAS  Google Scholar 

  13. Wolf, H., Haus, M. & Wilmes, E. Persistence of Epstein-Barr virus in the parotid gland. J. Virol. 51, 795–798 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hurley, E.A., Klaman, L.D., Agger, S., Lawrence, J.B. & Thorley-Lawson, D.A. The prototypical Epstein-Barr virus-transformed lymphoblastoid cell line IB4 is an unusual variant containing integrated but no episomal viral DNA. J. Virol. 65, 3958–3963 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, J.R. et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102, 827–837 (2000).

    Article  CAS  Google Scholar 

  16. Simons, K. & Fuller, S.D. Cell surface polarity in epithelia. Annu. Rev. Cell Biol. 1, 243–288 (1985).

    Article  CAS  Google Scholar 

  17. Imai, S., Nishikawa, J. & Takada, K. Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. J. Virol. 72, 4371–4378 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang, Y. et al. Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J. Virol. 73, 8857–8866 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Modrow, S., Höflacher, B. & Wolf, I.I. Identification of a protein encoded in the EB-viral open reading frame BMRF2. Arch. Virol. 127, 379–386 (1992).

    Article  CAS  Google Scholar 

  20. Gavrilovskaya, I.N., Brown, E.J., Ginsberg, M.H. & Mackow, E.R. Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by β3 integrins. J. Virol. 73, 3951–3959 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nemerow, G.R. Cell receptors involved in adenovirus entry. Virology 274, 1–4 (2000).

    Article  CAS  Google Scholar 

  22. Jackson, T. et al. Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin αvβ3 in vitro. J. Virol. 71, 8357–8361 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jackson, T., Sheppard, D., Denyer, M., Blakemore, W. & King, A.M. The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. J. Virol. 74, 4949–4956 (2000).

    Article  CAS  Google Scholar 

  24. Akula, S.M., Pramod, N.P., Wang, F.Z. & Chandran, B. Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108, 407–419 (2002).

    Article  CAS  Google Scholar 

  25. Plow, E.F., Haas, T.A., Zhang, L., Loftus, J. & Smith, J.W. Ligand binding to integrins. J. Biol. Chem. 275, 21785–21788 (2000).

    Article  CAS  Google Scholar 

  26. Yoshiyama, H., Imai, S., Shimizu, N. & Takada, K. Epstein-Barr virus infection of human gastric carcinoma cells: implication of the existence of a new virus receptor different from CD21. J. Virol. 71, 5688–5691 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Janz, A. et al. Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J. Virol. 74, 10142–10152 (2000).

    Article  CAS  Google Scholar 

  28. Chang, Y. et al. Detection of transcripts initiated from two viral promoters (Cp and Wp) in Epstein-Barr virus-infected nasopharyngeal carcinoma cells and biopsies. Lab. Invest. 78, 715–726 (1998).

    CAS  PubMed  Google Scholar 

  29. Palefsky, J.M. et al. Epstein-Barr virus BMRF-2 and BDLF-3 expression in hairy leukoplakia. Oral Dis. 3 suppl. 1, S171–176 (1997).

    Article  Google Scholar 

  30. Peñaranda, M.E. et al. Expression of Epstein-Barr virus BMRF-2 and BDLF-3 genes in hairy leukoplakia [published erratum appears in J. Gen. Virol. 79, 1321 (1998)]. J. Gen. Virol. 78, 3361–3370 (1997).

    Article  Google Scholar 

  31. Lagenaur, L.A. & Palefsky, J.M. Regulation of Epstein-Barr virus promoters in oral epithelial cells and lymphocytes. J. Virol. 73, 6566–6572 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Akiyama, S.K. & Yamada, K.M. Biosynthesis and acquisition of biological activity of the fibronectin receptor. J. Biol. Chem. 262, 17536–17542 (1987).

    CAS  PubMed  Google Scholar 

  33. Kim, L.T. et al. Altered glycosylation and cell surface expression of β1 integrin receptors during keratinocyte activation. J. Cell Sci. 103, 743–753 (1992).

    CAS  PubMed  Google Scholar 

  34. Friedl, P., Zanker, K.S. & Brocker, E.B. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech. 43, 369–378 (1998).

    Article  CAS  Google Scholar 

  35. Friedl, P., Brocker, E.B. & Zanker, K.S. Integrins, cell matrix interactions and cell migration strategies: fundamental differences in leukocytes and tumor cells. Cell Adhes. Commun. 6, 225–236 (1998).

    Article  CAS  Google Scholar 

  36. Iwata, S., Ohashi, Y., Kamiguchi, K. & Morimoto, C. β1-integrin-mediated cell signaling in T lymphocytes. J. Dermatol. Sci. 23, 75–86 (2000).

    Article  CAS  Google Scholar 

  37. Giancotti, F.G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    Article  CAS  Google Scholar 

  38. Tugizov, S., Maidji, E. & Pereira, L. Role of apical and basolateral membranes in replication of human cytomegalovirus in polarized retinal pigment epithelial cells. J. Gen. Virol. 77, 61–74 (1996).

    Article  CAS  Google Scholar 

  39. Dingwell, K.S. et al. Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J. Virol. 68, 834–845 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson, D.C. & Huber, M.T. Directed egress of animal viruses promotes cell-to-cell spread. J. Virol. 76, 1–8 (2002).

    Article  CAS  Google Scholar 

  41. Tugizov, S., Maidji, E., Xiao, J., Zheng, Z. & Pereira, L. Human cytomegalovirus glycoprotein B contains autonomous determinants for vectorial targeting to apical membranes of polarized epithelial cells. J. Virol. 72, 7374–7386 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Caplan, M.J., Anderson, H.C., Pallade, G.E. & Jamieson, J.D. Intracellular sorting and polarized cell surface delivery of (Na+, K+) ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell 46, 623–631 (1986).

    Article  CAS  Google Scholar 

  43. Lembo, D., Angeretti, A., Gariglio, M. & Landolfo, S. Murine cytomegalovirus induces expression and enzyme activity of cellular dihydrofolate reductase in quiescent cells. J. Gen. Virol. 79, 2803–2807 (1998).

    Article  CAS  Google Scholar 

  44. Hall, D.E. et al. The α1/β1 and α6/β1 integrin heterodimers mediate cell attachment to distinct sites on laminin. J. Cell Biol. 110, 2175–2184 (1990).

    Article  CAS  Google Scholar 

  45. Werb, Z., Tremble, P.M., Behrendtsen, O., Crowley, E. & Damsky, C.H. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell Biol. 109, 877–889 (1989).

    Article  CAS  Google Scholar 

  46. Hanzel, D., Nabi, I.R., Surzolo, C., Powell, S.K. & Rodriguez-Boulan, E. New techniques lead to advances in epithelial cell polarity. Sem. Cell Biol. 2, 341–353 (1991).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Lennette for sera from nasopharyngeal carcinoma patients, V. Petersen for electron microscopy and P. Dazin for cell sorting assays. This project was supported by US National Institutes of Health grant P01 DE07946 and funds provided by the Division of Research Resources 5 M01-RR-00079, US Public Health Service.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharof M. Tugizov or Joel M. Palefsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tugizov, S., Berline, J. & Palefsky, J. Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med 9, 307–314 (2003). https://doi.org/10.1038/nm830

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm830

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing