Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation

Abstract

The viral infectivity factor (Vif) encoded by HIV-1 neutralizes a potent antiviral pathway that occurs in human T lymphocytes and several leukemic T-cell lines termed nonpermissive, but not in other cells termed permissive. In the absence of Vif, this antiviral pathway efficiently inactivates HIV-1. It was recently reported that APOBEC3G (also known as CEM-15), a cytidine deaminase nucleic acid–editing enzyme, confers this antiviral phenotype on permissive cells. Here we describe evidence that Vif binds APOBEC3G and induces its rapid degradation, thus eliminating it from cells and preventing its incorporation into HIV-1 virions. Studies of Vif mutants imply that it contains two domains, one that binds APOBEC3G and another with a conserved SLQ(Y/F)LA motif that mediates APOBEC3G degradation by a proteasome-dependent pathway. These results provide promising approaches for drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Vif downmodulates APOBEC3G-Myc in 293T cells.
Figure 2: Effects of Vif on APOBEC3G-Myc.
Figure 3: Vif prevents viral encapsidation of APOBEC3G-Myc.
Figure 4: Vif binds to APOBEC3G-Myc.
Figure 5: Vif causes rapid degradation of APOBEC3G-Myc.
Figure 6: APOBEC3G-Myc degradation by Vif involves a proteasome-dependent pathway.

Similar content being viewed by others

References

  1. Gabuzda, D.H. et al. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol. 66, 6489–6495 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Madani, N. & Kabat, D. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J. Virol. 72, 10251–10255 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Simon, J.H., Gaddis, N.C., Fouchier, R.A. & Malim, M.H. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat. Med. 4, 1397–1400 (1998).

    Article  CAS  Google Scholar 

  4. Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  Google Scholar 

  5. Gaddis, N.C., Chertova, E., Sheehy, A.M., Henderson, L.E. & Malim, M.H. Comprehensive investigation of the molecular defect in vif-deficient human immunodeficiency virus type 1 virions. J. Virol. 77, 5810–5820 (2003).

    Article  CAS  Google Scholar 

  6. Ochsenbauer, C., Wilk, T. & Bosch, V. Analysis of vif-defective human immunodeficiency virus type 1 (HIV-1) virions synthesized in 'non-permissive' T lymphoid cells stably infected with selectable HIV-1. J. Gen. Virol. 78, 627–635 (1997).

    Article  CAS  Google Scholar 

  7. von Schwedler, U., Song, J., Aiken, C. & Trono, D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J. Virol. 67, 4945–4955 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Courcoul, M. et al. Peripheral blood mononuclear cells produce normal amounts of defective Vif- human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. J. Virol. 69, 2068–2074 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Simon, J.H. & Malim, M.H. The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J. Virol. 70, 5297–5305 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dettenhofer, M., Cen, S., Carlson, B.A., Kleiman, L. & Yu, X.F. Association of human immunodeficiency virus type 1 Vif with RNA and its role in reverse transcription. J. Virol. 74, 8938–8945 (2000).

    Article  CAS  Google Scholar 

  11. Goncalves, J., Korin, Y., Zack, J. & Gabuzda, D. Role of Vif in human immunodeficiency virus type 1 reverse transcription. J. Virol. 70, 8701–8709 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Teng, B., Burant, C.F. & Davidson, N.O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260, 1816–1819 (1993).

    Article  CAS  Google Scholar 

  13. Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    Article  CAS  Google Scholar 

  14. Liu, H. et al. The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. J. Virol. 69, 7630–7638 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan, M.A. et al. Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. J. Virol. 75, 7252–7265 (2001).

    Article  CAS  Google Scholar 

  16. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A.J. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112 (2003).

    Article  CAS  Google Scholar 

  17. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003).

    Article  CAS  Google Scholar 

  18. Mangeat, B., Turelli, P., Caron, G., Friedli, L.P. & Trono, D. Broad antiretroviral defense by human Apobec3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).

    Article  CAS  Google Scholar 

  19. Harris, R.S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003).

    Article  CAS  Google Scholar 

  20. Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31 (2003).

    Article  CAS  Google Scholar 

  21. Oberste, M.S. & Gonad, M.A. Conservation of amino-acid sequence motifs in lentivirus Vif proteins. Virus Genes 6, 95–102 (1992).

    Article  CAS  Google Scholar 

  22. Page, K.A., Landau, N.R. & Littman, D.R. Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol. 64, 5270–5276 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Madani, N. & Kabat, D. Cellular and viral specificities of human immunodeficiency virus type 1 vif protein. J. Virol. 74, 5982–5987 (2000).

    Article  CAS  Google Scholar 

  24. Simon, J.H., Sheehy, A.M., Carpenter, E.A., Fouchier, R.A. & Malim, M.H. Mutational analysis of the human immunodeficiency virus type 1 Vif protein. J. Virol. 73, 2675–2681 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Garrett, E.D., Tiley, L.S. & Cullen, B.R. Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. J. Virol. 65, 1653–1657 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gluschankof, P., Mondor, I., Gelderblom, H.R. & Sattentau, Q.J. Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations. Virology 230, 125–133 (1997).

    Article  CAS  Google Scholar 

  27. Verma, R. & Deshaies, R.J. A proteasome howdunit: the case of the missing signal. Cell 101, 341–344 (2000).

    Article  CAS  Google Scholar 

  28. Kamura, T. et al. The elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881 (1998).

    Article  CAS  Google Scholar 

  29. Iwai, K. et al. Identification of the von Hippel-Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl. Acad. Sci. USA 96, 12436–12441 (1999).

    Article  CAS  Google Scholar 

  30. Schubert, U. et al. CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J. Virol. 72, 2280–2288 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Margottin, F. et al. A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1, 565–574 (1998).

    Article  CAS  Google Scholar 

  32. Desrosiers, R.C. et al. Identification of highly attenuated mutants of simian immunodeficiency virus. J. Virol. 72, 1431–1437 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Barnes, W.M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc. Natl. Acad. Sci. USA 91, 2216–2220 (1994).

    Article  CAS  Google Scholar 

  34. Sambrook, J., Fritsch, E.F. & Maniatis, T. In vitro amplification of DNA by the polymerase chain reaction. in Molecular Cloning: A Laboratory Manual 14.5–14.34 (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  35. Helseth, E. et al. Rapid complementation assays measuring replicative potential of human immunodeficiency virus type 1 envelope glycoprotein mutants. J. Virol. 64, 2416–2420 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Page, K.A., Stearns, S.M. & Littman, D.R. Analysis of mutations in the V3 domain of gp160 that affect fusion and infectivity. J. Virol. 66, 524–533 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Platt, E.J., Kuhmann, S.E., Rose, P.P. & Kabat, D. Adaptive mutations in the V3 loop of gp120 enhance fusogenicity of human immunodeficiency virus type 1 and enable use of a CCR5 coreceptor that lacks the amino-terminal sulfated region. J. Virol. 75, 12266–12278 (2001).

    Article  CAS  Google Scholar 

  38. Marin, M., Tailor, C.S., Nouri, A. & Kabat, D. Sodium-dependent neutral amino acid transporter type 1 is an auxiliary receptor for baboon endogenous retrovirus. J. Virol. 74, 8085–8093 (2000).

    Article  CAS  Google Scholar 

  39. Klippel, A., Escobedo, J.A., Hirano, M. & Williams, L.T. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol. Cell. Biol. 14, 2675–2685 (1994).

    Article  CAS  Google Scholar 

  40. Tailor, C.S., Nouri, A., Lee, C.G., Kozak, C. & Kabat, D. Cloning and characterization of a cell surface receptor for xenotropic and polytropic murine leukemia viruses. Proc. Natl. Acad. Sci. USA 96, 927–932 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Institutes of Health grant AI49729 to D.K. K.R. was the recipient of a predoctoral fellowship from the Department of Hematology and Oncology at Oregon Health & Science University. We thank D. Gabuzda for providing the pcDNA3.1-Vif vector, M. Malim for the Vif deletion mutants and M. Thayer for the S2 probe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kabat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marin, M., Rose, K., Kozak, S. et al. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9, 1398–1403 (2003). https://doi.org/10.1038/nm946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm946

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing