Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease

Abstract

Inhibition of polyglutamine-induced protein aggregation could provide treatment options for polyglutamine diseases such as Huntington disease. Here we showed through in vitro screening studies that various disaccharides can inhibit polyglutamine-mediated protein aggregation. We also found that various disaccharides reduced polyglutamine aggregates and increased survival in a cellular model of Huntington disease. Oral administration of trehalose, the most effective of these disaccharides, decreased polyglutamine aggregates in cerebrum and liver, improved motor dysfunction and extended lifespan in a transgenic mouse model of Huntington disease. We suggest that these beneficial effects are the result of trehalose binding to expanded polyglutamines and stabilizing the partially unfolded polyglutamine-containing protein. Lack of toxicity and high solubility, coupled with efficacy upon oral administration, make trehalose promising as a therapeutic drug or lead compound for the treatment of polyglutamine diseases. The saccharide-polyglutamine interaction identified here thus provides a new therapeutic strategy for polyglutamine diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of aggregation and cell death by saccharides in vitro.
Figure 2: Effects of trehalose on polyglutamine-mediated pathology in vivo.
Figure 3: Effects of trehalose on aggregation and neuron viability in vivo.
Figure 4: Effects of trehalose on motor function and survival in vivo.
Figure 5: Effects of glucose on polyglutamine-mediated pathology in vivo.

Similar content being viewed by others

References

  1. Zoghbi, H.Y. & Orr, H.T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000).

    Article  CAS  Google Scholar 

  2. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  Google Scholar 

  3. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  Google Scholar 

  4. Warrick, J.M. et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939–949 (1998).

    Article  CAS  Google Scholar 

  5. Lunkes, A. & Mandel, J.L. A cellular model that recapitulates major pathogenic steps of Huntington's disease. Hum. Mol. Genet. 7, 1355–1361 (1998).

    Article  CAS  Google Scholar 

  6. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  Google Scholar 

  7. Michalik, A. & Van Broeckhoven, C. Pathogenesis of polyglutamine disorders: aggregation revisited. Hum. Mol. Genet. 12, R173–R186 (2003).

    Article  CAS  Google Scholar 

  8. Mccampbell, A. & Fischbeck, K.H. Polyglutamine and CBP: fatal attraction? Nat. Med. 7, 528–530 (2001).

    Article  CAS  Google Scholar 

  9. Ross, C.A., Poirier, M.A., Wanker, E.E. & Amzel, M. Polyglutamine fibrillogenesis: the pathway unfolds. Proc. Natl. Acad. Sci. USA 100, 1–3 (2003).

    Article  CAS  Google Scholar 

  10. Bates, G. Huntingtin aggregation and toxicity in Huntington's disease. Lancet 361, 1642–1644 (2003).

    Article  CAS  Google Scholar 

  11. Ona, V.O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 399, 263–267 (1999).

    Article  CAS  Google Scholar 

  12. Cummings, C.J. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19, 148–154 (1998).

    Article  CAS  Google Scholar 

  13. Jana, N.R., Tanaka, M., Wang, G.H. & Nukina, N. Polyglutamine length–dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum. Mol. Genet. 9, 2009–2018 (2000).

    Article  CAS  Google Scholar 

  14. Shimohata, T. et al. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat. Genet. 26, 29–36 (2000).

    Article  CAS  Google Scholar 

  15. Perez, M.K. et al. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell. Biol. 143, 1457–1470 (1998).

    Article  CAS  Google Scholar 

  16. Chen, M. et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6, 797–801 (2000).

    Article  CAS  Google Scholar 

  17. Ferrante, R.J. et al. Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. J. Neurosci. 20, 4389–4397 (2000).

    Article  CAS  Google Scholar 

  18. Hockly, E. et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl. Acad. Sci. USA 100, 2041–2046 (2003).

    Article  CAS  Google Scholar 

  19. Sanchez, I., Mahlke, C. & Yuan, J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421, 373–379 (2003).

    Article  CAS  Google Scholar 

  20. Hughes, R.E. & Olson, J.M. Therapeutic opportunities in polyglutamine disease. Nat. Med. 7, 419–423 (2001).

    Article  CAS  Google Scholar 

  21. Heiser, V. et al. Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implication for Huntington's disease therapy. Proc. Natl. Acad. Sci. USA 97, 6739–6744 (2000).

    Article  CAS  Google Scholar 

  22. Heiser, V. et al. Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington's disease by using an automated filter retardation assay. Proc. Natl. Acad. Sci. USA 99, 16400–16406 (2002).

    Article  CAS  Google Scholar 

  23. Tanaka, M., Morishima, I., Akagi, T., Hashikawa, T. & Nukina, N. Intra- and intermolecular β-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J. Biol. Chem. 276, 45470–45475 (2001).

    Article  CAS  Google Scholar 

  24. Tanaka, M. et al. The effects of aggregation-inducing motifs on amyloid formation of model proteins related to neurodegenerative diseases. Biochemistry 41, 10277–10286 (2002).

    Article  CAS  Google Scholar 

  25. Nagai, Y. et al. Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage display screening. J. Biol. Chem. 275, 10437–10442 (2000).

    Article  CAS  Google Scholar 

  26. Luo, Y. & Baldwin, R.L. Trifluoroethanol stabilizes the pH 4 folding intermediate of sperm whale apomyoglobin. J. Mol. Biol. 279, 49–57 (1998).

    Article  CAS  Google Scholar 

  27. Wang, G.H. et al. Caspase activation during apoptotic cell death induced by expanded polyglutamine in N2a cells. Neuroreport 10, 2435–2438 (1999).

    Article  CAS  Google Scholar 

  28. Guo, N., Puhlev, I., Brown, D.R., Mansbridge, J. & Levine, F. Trehalose expression confers desiccation tolerance on human cells. Nat. Biotechnol. 18, 168–171 (2000).

    Article  CAS  Google Scholar 

  29. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  Google Scholar 

  30. Sathasivam, K. et al. Formation of polyglutamine inclusions in non-CNS tissue. Hum. Mol. Genet. 8, 813–822 (1999).

    Article  CAS  Google Scholar 

  31. Poirier, M.A. et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277, 41032–41037 (2002).

    Article  CAS  Google Scholar 

  32. Azzouz, M. et al. Increased motoneuron survival and improved neuromuscular function in transgenic ALS mice after intraspinal injection of an adeno-associated virus encoding Bcl-2. Hum. Mol. Genet. 9, 803–811 (2000).

    Article  CAS  Google Scholar 

  33. Hurlbert, M.S. et al. Mice transgenic for an expanded CAG repeat in the Huntington's disease gene develop diabetes. Diabetes 48, 649–651 (1999).

    Article  CAS  Google Scholar 

  34. Farrer, A. Diabetes mellitus in Huntington's disease. Clin. Genet. 27, 62–67 (1985).

    Article  CAS  Google Scholar 

  35. Singer, M.A. & Lindquist, S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1, 639–648 (1998).

    Article  CAS  Google Scholar 

  36. Kazantsev, A. et al. A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat. Genet. 30, 367–376 (2002).

    Article  CAS  Google Scholar 

  37. Yang, W., Dunlap, J.R., Andrews, R.B. & Wetzel, R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11, 2905–2917 (2002).

    Article  CAS  Google Scholar 

  38. Wellington, C.L. et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273, 9158–9167 (1998).

    Article  CAS  Google Scholar 

  39. Kandror, O., DeLeon, A. & Goldberg, A.L. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperature. Proc. Natl. Acad. Sci. USA 99, 9727–9732 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Yamada (RIKEN Brain Science Institute) for maintenance of mice, N. Yoshiki and Y. Obata (RIKEN Tsukuba institute) for instruction on ovarian transplantation of R6/2 transgenic mice, and S. Sligar (University of Illinois) for allowing us to use the wild-type myoglobin expression plasmid. This study was partly supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology (M.T. and N.N.) and of Health, Labour and Welfare (N.N), Japan, and by RIKEN President's Special Research Grant (M.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Nukina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M., Machida, Y., Niu, S. et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10, 148–154 (2004). https://doi.org/10.1038/nm985

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing