Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The dentin–enamel junction and the fracture of human teeth

Abstract

The dentin–enamel junction (DEJ), which is the interfacial region between the dentin and outer enamel coating in teeth, is known for its unique biomechanical properties that provide a crack-arrest barrier for flaws formed in the brittle enamel1. In this work, we re-examine how cracks propagate in the proximity of the DEJ, and specifically quantify, using interfacial fracture mechanics, the fracture toughness of the DEJ region. Careful observation of crack penetration through the interface and the new estimate of the DEJ toughness (5 to 10 times higher than enamel but 75% lower than dentin) shed new light on the mechanism of crack arrest. We conclude that the critical role of this region, in preventing cracks formed in enamel from traversing the interface and causing catastrophic tooth fractures, is not associated with the crack-arrest capabilities of the interface itself; rather, cracks tend to penetrate the (optical) DEJ and arrest when they enter the tougher mantle dentin adjacent to the interface due to the development of crack-tip shielding from uncracked-ligament bridging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical profiles of the Vickers hardness and the indentation toughness.
Figure 2: Optical micrograph of the placement of Vickers indents in the enamel.
Figure 3: The linear-elastic solutions of He and Hutchinson22.
Figure 4: SEM examples of arrested cracks.

Similar content being viewed by others

References

  1. Lin, C. P., Douglas, W. H. & Erlandsen, S. L. Scanning electron microscopy of Type I collagen at the dentin enamel junction of human teeth. J. Histochem. Cytochem. 41, 381–388 (1993).

    Article  CAS  Google Scholar 

  2. White, S. N. et al. The dentino-enamel junction is a broad transitional zone uniting dissimilar bioceramic composites. J. Am. Ceram. Soc. 83, 238–240 (2000).

    Article  CAS  Google Scholar 

  3. Ten Cate, A. R. Oral Histology: Development, Structure, and Function 4th edn (Mosby, St. Louis, Missouri, 1994).

    Google Scholar 

  4. Hassan, R., Caputo, A. A. & Bunshah, R. F. Fracture toughness of human enamel. J. Dent. Res. 40, 820–827 (1981).

    Article  Google Scholar 

  5. Xu, H. H. et al. Indentation damage and mechanical properties of human enamel and dentin. J. Dent. Res. 77, 472–480 (1998).

    Article  CAS  Google Scholar 

  6. Marshall, G. W., Marshall, S. J., Kinney, J. H. & Balooch, M. The dentin substrate: Structure and properties related to bonding. J. Dent. 25, 441–458 (1997).

    Article  CAS  Google Scholar 

  7. Imbeni, V., Nalla, R. K., Bosi, C., Kinney, J. H. & Ritchie, R. O. On the in vitro fracture toughness of human dentin. J. Biomed. Mater. Res. A 66, 1–9 (2003).

    Article  CAS  Google Scholar 

  8. Iwamoto, N. & Ruse, N. D. Fracture toughness of human dentin. J. Biomed. Mater. Res A 66, 507–512 (2003).

    Article  Google Scholar 

  9. Tesch, W. et al. Graded microstructure and mechanical properties of human crown dentin. Calcified Tissue Int. 69, 147–157 (2001).

    Article  CAS  Google Scholar 

  10. Habelitz, S., Balooch, M., Marshall, S. J., Balooch, G. & Marshall, G. W. In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J. Struct. Biol. 38, 227–236 (2002).

    Article  Google Scholar 

  11. Marshall, G. W., Balooch, M., Gallagher, R. R., Gansky, S. A. & Marshall, S. J. Mechanical properties of the dentin-enamel junction: AFM studies of nanohardness, elastic modulus and fracture. J. Biomed. Mater. Res. 54, 87–95 (2001).

    Article  CAS  Google Scholar 

  12. Habelitz, S., Marshall, S. J., Marshall, G. W. & Balooch, M. The functional width of the dentino-enamel junction determined by AFM-based nanoscratching. J. Struct. Biol. 135, 244–301 (2001).

    Article  Google Scholar 

  13. Lin, C. P. & Douglas, W. H. Structure-property relations and crack resistance at the bovine dentin-enamel junction. J. Dent. Res. 73, 1072–1078 (1994).

    Article  CAS  Google Scholar 

  14. Dong, X. D. & Ruse, N. D. Fatigue crack propagation path across the dentinoenamel junction complex in human teeth. J. Biomed. Mater. Res. A 66, 103–109 (2003).

    Article  CAS  Google Scholar 

  15. Rasmussen, S. T. & Patchin, R. E. Fracture properties of human enamel and dentin in an aqueous environment. J. Dent. Res. 63, 1362–1368 (1984).

    Article  CAS  Google Scholar 

  16. Rasmussen, S. T. Fracture properties of human teeth in proximity to the dentinoenamel junction. J. Dent. Res. 63, 1279–1283 (1984).

    Article  CAS  Google Scholar 

  17. Lin, C. P. & Douglas, W. H. Fracture mechanics at the human dentin-resin interface: a fracture mechanics approach. J. Biomech. 27, 1037–1047 (1994).

    Article  CAS  Google Scholar 

  18. Urabe, I., Nakajima, M., Sano, H. & Tagami, J. Physical properties of the dentin-enamel junction region. Am. J. Dent. 13, 129–135 (2000).

    CAS  Google Scholar 

  19. Wang, R. Z. & Weiner, S. Strain-structure relations in human teeth using Moire fringes. J. Biomech. 31, 135–141 (1998).

    Article  CAS  Google Scholar 

  20. Fong, H., Sarikaya, M., White, S. N. & Snead, M. L. Nano-mechanical properties profiles across dentin-enamel junction of human incisor teeth. Mater. Sci. Eng. C 7, 119–128 (2000).

    Article  Google Scholar 

  21. Sun, E. Y. et al. Debonding behavior between β-Si3N4 whiskers and oxynitride glasses with or without β-SiAlON interfacial layer. Acta Mater. 47, 2777–2785 (1999).

    Article  CAS  Google Scholar 

  22. He, M. -Y. & Hutchinson, J. W. Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25, 1053–1067 (1989).

    Article  Google Scholar 

  23. Shang, J. K. & Ritchie, R. O. Crack bridging by uncracked ligaments during fatigue-crack growth in SiC-reinforced aluminum-alloy composites. Metall. Trans. A 20, 897–908 (1989).

    Article  Google Scholar 

  24. Kruzic, J. J., Nalla, R. K., Kinney, J. H. & Ritchie, R. O. Crack blunting, crack bridging and resistance-curve fracture mechanics of dentin: Effect of hydration. Biomater. 24, 5209–5221 (2003).

    Article  CAS  Google Scholar 

  25. Nalla, R. K., Kruzic, J. J., Kinney, J. H. & Ritchie, R. O. Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomater. 26, 217–231 (2005).

    Article  CAS  Google Scholar 

  26. Yeni, Y. N. & Fyhrie, D. P. A rate-dependent microcrack-bridging model that can explain the strain rate dependency of cortical bone apparent yield strength. J. Biomech. 36, 1343–1353 (2003).

    Article  Google Scholar 

  27. Habelitz, S., Marshall, G. W., Balloch, M. & Marshall, S. J. Nanoindentation and storage of teeth. J. Biomechanics 35, 995–998 (2002).

    Article  Google Scholar 

  28. Lawn, B. R. Fracture of Brittle Solids 2nd edn (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  29. Dundurs, J. Edge-bonded dissimilar orthogonal elastic wedges. J. Appl. Mech. 36, 650–652 (1969).

    Article  Google Scholar 

  30. Ritchie, R. O. Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack-tip shielding. Mater. Sci. Eng. 103, 15–28 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health, National Institute of Dental and Craniofacial Research, under Grant No. R01 DE 13029 (for V.I., G.W.M., S.J.M.), and by the Director, Office of Science, Office of Basic Energy Science, Division of Materials Sciences and Engineering of the Department of Energy under Contract No. DE-Ac03-76SF00098 (for J.J.K., R.O.R.). The authors wish to thank Grace Nonomura for specimen preparation, and Cynthia Chao, Kevin Liu, Earnst Young, Ravi Nalla and Eduardo Saiz for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Ritchie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbeni, V., Kruzic, J., Marshall, G. et al. The dentin–enamel junction and the fracture of human teeth. Nature Mater 4, 229–232 (2005). https://doi.org/10.1038/nmat1323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing