Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii

Abstract

Multidrug-resistant (MDR) bacterial infections are a serious threat to public health. Among the most alarming resistance trends is the rapid rise in the number and diversity of β-lactamases, enzymes that inactivate β-lactams, a class of antibiotics that has been a therapeutic mainstay for decades. Although several new β-lactamase inhibitors have been approved or are in clinical trials, their spectra of activity do not address MDR pathogens such as Acinetobacter baumannii. This report describes the rational design and characterization of expanded-spectrum serine β-lactamase inhibitors that potently inhibit clinically relevant class A, C and D β-lactamases and penicillin-binding proteins, resulting in intrinsic antibacterial activity against Enterobacteriaceae and restoration of β-lactam activity in a broad range of MDR Gram-negative pathogens. One of the most promising combinations is sulbactam–ETX2514, whose potent antibacterial activity, in vivo efficacy against MDR A. baumannii infections and promising preclinical safety demonstrate its potential to address this significant unmet medical need.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-averaged solution structures of avibactam, 3 and 5 covalently bound to Ser81 of OXA-24, from MD simulations.
Figure 2: Spectrum and mechanism of ETX2514 intrinsic antibacterial activity, which enhances its ability to restore carbapenem activity against CRE strains.
Figure 3: Sulbactam–ETX2514 in vivo efficacy in MDR A. baumannii infection mouse models.

Similar content being viewed by others

References

  1. Bush, K. & Jacoby, G. A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54, 969–976 (2010).

    CAS  PubMed  Google Scholar 

  2. Coleman, K. Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. Curr. Opin. Microbiol. 14, 550–555 (2011).

    CAS  PubMed  Google Scholar 

  3. Bush, K. & Bradford, P. A. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb. Perspect. Med. 6, a025247 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Papp-Wallace, K. M. & Bonomo, R. A. New β-lactamase inhibitors in the clinic. Infect. Dis. Clin. North Am. 30, 441–464 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. Poirel, L., Naas, T. & Nordmann, P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob. Agents Chemother. 54, 24–38 (2010).

    CAS  PubMed  Google Scholar 

  6. Lahiri, S. D. et al. Molecular basis of selective inhibition and slow reversibility of avibactam against class D carbapenemases: a structure-guided study of OXA-24 and OXA-48. ACS Chem. Biol. 10, 591–600 (2015).

    CAS  PubMed  Google Scholar 

  7. Boucher, H. W. et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12 (2009).

    PubMed  Google Scholar 

  8. Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012).

    CAS  PubMed  Google Scholar 

  9. Potron, A., Poirel, L. & Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J. Antimicrob. Agents 45, 568–585 (2015).

    CAS  PubMed  Google Scholar 

  10. King, A. M. et al. Structural and kinetic characterization of diazabicyclooctanes as dual inhibitors of both serine-β-lactamases and penicillin-binding proteins. ACS Chem. Biol. 11, 864–868 (2016).

    CAS  PubMed  Google Scholar 

  11. Morinaka, A. et al. In vitro and in vivo activities of the diazabicyclooctane OP0595 against AmpC-derepressed Pseudomonas aeruginosa. J. Antibiot. 70, 246–250 (2017).

    CAS  Google Scholar 

  12. Leonard, D. A., Bonomo, R. A. & Powers, R. A. Class D β-lactamases: a reappraisal after five decades. Acc. Chem. Res. 46, 2407–2415 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Santillana, E., Beceiro, A., Bou, G. & Romero, A. Crystal structure of the carbapenemase OXA-24 reveals insights into the mechanism of carbapenem hydrolysis. Proc. Natl Acad. Sci. USA 104, 5354–5359 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tommasi, R., Brown, D. G., Walkup, G. K., Manchester, J. I. & Miller, A. A. ESKAPEing the labyrinth of antibacterial discovery. Nat. Rev. Drug. Discov. 14, 529–542 (2015).

    CAS  PubMed  Google Scholar 

  15. McGuire, H. et al. Preparation of oxodiazabicyclooctenyl hydrogen sulfate derivatives for use as beta-lactamase inhibitors. US patent 9,309,245 B2 (2013).

  16. Ehmann, D. E. et al. Kinetics of avibactam inhibition against class A, C, and D β-lactamases. J. Biol. Chem. 288, 27960–27971 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Massova, I. & Mobashery, S. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother. 42, 1–17 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morinaka, A. et al. OP0595, a new diazabicyclooctane: mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam ‘enhancer’. J. Antimicrob. Chemother. 70, 2779–2786 (2015).

    CAS  PubMed  Google Scholar 

  19. Nonejuie, P., Burkart, M., Pogliano, K. & Pogliano, J. Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc. Natl Acad. Sci. USA 110, 16169–16174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Turnidge, J. & Paterson, D. L. Setting and revising antibacterial susceptibility breakpoints. Clin. Microbiol. Rev. 20, 391–408 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Penwell, W. F. et al. Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 59, 1680–1689 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Krizova, L., Poirel, L., Nordmann, P. & Nemec, A. TEM-1 β-lactamase as a source of resistance to sulbactam in clinical strains of Acinetobacter baumannii. J. Antimicrob. Chemother. 68, 2786–2791 (2013).

    CAS  PubMed  Google Scholar 

  23. Kuo, S. C. et al. Contribution of Acinetobacter-derived cephalosporinase-30 to sulbactam resistance in Acinetobacter baumannii. Front. Microbiol. 6, 231 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. McLeod, S. et al. Sulbactam combined with the novel β-lactamase inhibitor ETX2514 for the treatment of Acinetobacter baumannii infections, poster 2246, presented at IDWeek, New Orleans, Louisiana, USA (2016).

  25. Hackel, M. et al. Global surveillance of the activity of sulbactam combined with the novel β-lactamase inhibitor ETX2514 against clinical isolates of Acinetobacter baumannii from 2014, poster 2243, presented at IDWeek, New Orleans, Louisiana, USA (2016).

  26. Rodríguez-Martínez, J.-M., Poirel, L. & Nordmann, P. Genetic and functional variability of AmpC-type β-lactamases from Acinetobacter baumannii. Antimicrob. Agents Chemother. 54, 4930–4933 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Schmidt, W. & Balboni, A. Pharmacology Review (application no. 206494) (Department of Health and Human Services, 2010); https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/206494Orig1s000PharmR.pdf

    Google Scholar 

  28. Miller, A. A. et al. ETX2514 restoration of sulbactam activity against multidrug resistant Acinetobacter baumannii correlates with β-lactamase inhibition in vitro and in vivo, paper OS0562, presented at ECCMID, Vienna, Austria (2017).

  29. Livermore, D. M., Mushtaq, S., Warner, M., Vickers, A. & Woodford, N. In vitro activity of cefepime/zidebactam (WCK5222) against Gram-negative bacteria. J. Antimicrob. Chemother. 72, 1373–1385 (2017).

    CAS  PubMed  Google Scholar 

  30. Lapuebla, A. et al. Activity of meropenem combined with RPX7009, a novel β-lactamase inhibitor, against Gram-negative clinical isolates in New York City. Antimicrob. Agents Chemother. 59, 4856–4860 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mushtaq, S., Vickers, A., Woodford, N. & Livermore, D. M. WCK 4234, a novel diazabicyclooctane potentiating carbapenems against Enterobacteriaceae, Pseudomonas and Acinetobacter with class A, C and D β-lactamases. J. Antimicrob. Chemother. 72, 1688–1695 (2017).

    CAS  PubMed  Google Scholar 

  32. Boyd, J. A. Process for preparing heterocyclic compounds including trans-7-oxo-6-(sulphooxy-1,6-diazabicyclo[3,2]octane-2-carboxamide and salts thereof. Patent application WO 2012/172368 A1 (2012).

  33. Stachyra, T. et al. Mechanistic studies of the inactivation of TEM-1 and P99 by NXL104, a novel non-β-lactam β-lactamase inhibitor. Antimicrob. Agents Chemother. 54, 5132–5138 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shapiro, A. B., Gao, N., Gu, R. F. & Thresher, J. Fluorescence anisotropy-based measurement of Pseudomonas aeruginosa penicillin-binding protein 2 transpeptidase inhibitor acylation rate constants. Anal. Biochem. 463, 15–22 (2014).

    CAS  PubMed  Google Scholar 

  35. Shapiro, A. B., Gu, R. F., Gao, N., Livchak, S. & Thresher, J. Continuous fluorescence anisotropy-based assay of BOCILLIN FL penicillin reaction with penicillin binding protein 3. Anal. Biochem. 439, 37–43 (2013).

    CAS  PubMed  Google Scholar 

  36. Hujer, A. M. et al. Structure–activity relationships of different β-lactam antibiotics against a soluble form of Enterococcus faecium PBP5, a type II bacterial transpeptidase. Antimicrob. Agents Chemother. 49, 612–618 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sindhikara, D. J., Yoshida, N. & Hirata, F. Placevent: an algorithm for prediction of explicit solvent atom distribution—application to HIV-1 protease and F-ATP synthase. J. Comput. Chem. 33, 1536–1543 (2012).

    CAS  PubMed  Google Scholar 

  40. Velez-Vega, C., McKay, D. J., Aravamuthan, V., Pearlstein, R. & Duca, J. S. Time-averaged distributions of solute and solvent motions: exploring proton wires of GFP and PfM2DH. J. Chem. Informat. Model 54, 3344–3361 (2014).

    CAS  Google Scholar 

  41. Imming, P., Klar, B. & Dix, D. Hydrolytic stability versus ring size in lactams: implications for the development of lactam antibiotics and other serine protease inhibitors. J. Med. Chem. 43, 4328–4331 (2000).

    CAS  PubMed  Google Scholar 

  42. M07-A10. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard (Clinical and Laboratory Standards Institute, 2015).

    Google Scholar 

  43. Kovach, M. E. et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176 (1995).

    CAS  PubMed  Google Scholar 

  44. Hunger, M., Schmucker, R., Kishan, V. & Hillen, W. Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene 87, 45–51 (1990).

    CAS  PubMed  Google Scholar 

  45. Gerber, A. U. et al. Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice. J. Infect. Dis. 147, 910–917 (1983).

    CAS  PubMed  Google Scholar 

  46. Craig, W. A. & Gudmundsson, S. in Antibiotics in Laboratory Medicine (ed. Lorian, V. ) 296–329 (Williams & Wilkins, 1996).

    Google Scholar 

  47. Charan, J. & Kantharia, N. D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 4, 303–306 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the following groups and individuals: the AstraZeneca Infection medicinal chemistry team, especially B. Geng, H. Xiong, Y. Wu and F. Wu for their contributions to this project; S. Tentarelli, L. Gauthier, T. Friedman and C. Joubran for their assistance with analytical chemistry; H. Jahić for biochemical testing; J. Whiteaker for generating whole-genome sequencing data; J. Verheijen for partner discussions and P. Miller and P. Bradford for their leadership at AstraZeneca. The authors acknowledge the Novexel chemistry and biology teams for scientific discussions and insights into the DBO scaffold, and our collaborators at Syngene and Pharmaron for synthesis and at IHMA for susceptibility testing. The authors thank P. Dunman for the plasmid used in the A. baumannii isogenic panel. Finally, the authors thank M. Perros for his leadership both at AstraZeneca and Entasis and his comments on this manuscript. This work was fully funded by AstraZeneca and Entasis Therapeutics.

Author information

Authors and Affiliations

Authors

Contributions

T.F.D.-R. led the chemistry teams both at AstraZeneca and Entasis. S.G., J.C.-P., B.C. and N.B. generated the compounds described in the manuscript. H.H. led the lead finding team at AstraZeneca. S.L. solved the structure and performed the crystallographic analysis. C.V.-V. performed computational chemistry studies. N.B.O. performed crystallographic structure refinement and temperature factor analysis. A.B.S. and T.P. were responsible for biochemical data generation and analysis. S.M.M. performed microscopy. S.H.M. performed WGS analysis, constructed the A. baumannii expression vector and isogenic panel, and performed susceptibility testing. S.M.M., N.M.C., B.A. and R.A.G. performed susceptibility testing. R.M. analysed whole-genome sequences. N.G. expressed and purified PBPs. J.T. cloned and expressed β-lactamases and PBPs. J.V.N. led the in vivo efficacy studies. J.O'D. was responsible for the DMPK, PK/PD, in vivo efficacy and preclinical safety testing and wrote sections of the manuscript. D.E.E. and B.D.J. led the biochemistry and microbiology, respectively, at AstraZeneca. J.P.M. and R.A.T. oversaw the project at both AstraZeneca and Entasis. A.A.M. led the biology team at Entasis. T.F.D.-R. and A.A.M. wrote the manuscript.

Corresponding authors

Correspondence to Thomas F. Durand-Réville or Alita A. Miller.

Ethics declarations

Competing interests

All authors are current or past employees of AstraZeneca or Entasis Therapeutics and may own stock from one or both companies. Entasis Therapeutics owns a granted patent on the new diazabicyclooctenone BLI series (US patent 9,309,245 B2, granted 12 April 2016).

Supplementary information

Supplementary Information

Supplementary Methods 1–4, Supplementary Tables 1–6, Supplementary Figure 1. (PDF 2215 kb)

Supplementary Data 1

Metadata, β-lactamase content and antibiotic susceptibility of 84 recent MDR A. baumannii clinical isolates. (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durand-Réville, T., Guler, S., Comita-Prevoir, J. et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat Microbiol 2, 17104 (2017). https://doi.org/10.1038/nmicrobiol.2017.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.104

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research