Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GABAergic synapses are formed without the involvement of dendritic protrusions

Abstract

Synaptogenesis and the role of dendritic protrusions in this process are well studied in glutamatergic synapses. Much less is known about the formation of GABAergic synapses, which are located predominantly on the dendritic shaft. We used genetically labeled interneurons in mature hippocampal slice cultures and two-photon laser-scanning microscopy to examine contact formation between GABAergic axons and the dendrites of CA1 pyramidal cells. Dendritic protrusions distinguished and selected between glutamatergic and GABAergic boutons. In contrast with contacts with glutamatergic boutons, which can be long lasting, the contacts of dendritic protrusions with GABAergic boutons were always short lived. Similarly, the contacts made by GABAergic axonal protrusions were always transient. New putative GABAergic synapses were formed exclusively by new boutons appearing at pre-existing axon-dendrite crossings without the involvement of any dendritic or axonal protrusions. These findings imply that fundamentally different mechanisms underlie the generation of GABAergic and glutamatergic synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging GABAergic synapses in GAD65-GFP slice cultures.
Figure 2: Transient contacts by dendritic and axonal protrusions.
Figure 3: New GABAergic boutons appear at axon-dendrite crossings.
Figure 4: Lifetime of transient contacts and boutons.
Figure 5: Lifetime of dendritic and axonal protrusions.
Figure 6: New GABAergic boutons form synapses.

Similar content being viewed by others

References

  1. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  Google Scholar 

  2. Harris, K.M. & Kater, S.B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371 (1994).

    Article  CAS  Google Scholar 

  3. Megías, M., Emri, Z., Freund, T.F. & Gulyás, A.I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).

    Article  Google Scholar 

  4. Ziv, N.E. & Smith, S.J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    Article  CAS  Google Scholar 

  5. Fiala, J.C., Feinberg, M., Popov, V. & Harris, K.M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    Article  CAS  Google Scholar 

  6. Petrak, L.J., Harris, K.M. & Kirov, S.A. Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission. J. Comp. Neurol. 484, 183–190 (2005).

    Article  Google Scholar 

  7. Knott, G.W., Holtmaat, A., Wilbrecht, L., Welker, E. & Svoboda, K. Spine growth precedes synapse formation in the adult neocortex in vivo. Nat. Neurosci. 9, 1117–1124 (2006).

    Article  CAS  Google Scholar 

  8. Nägerl, U.V., Kostinger, G., Anderson, J.C., Martin, K.A. & Bonhoeffer, T. Protracted synaptogenesis after activity-dependent spinogenesis in hippocampal neurons. J. Neurosci. 27, 8149–8156 (2007).

    Article  Google Scholar 

  9. De Roo, M., Klauser, P., Mendez, P., Poglia, L. & Muller, D. Activity-dependent PSD formation and stabilization of newly formed spines in hippocampal slice cultures. Cereb. Cortex 18, 151–161 (2008).

    Article  Google Scholar 

  10. Lohmann, C., Finski, A. & Bonhoeffer, T. Local calcium transients regulate the spontaneous motility of dendritic filopodia. Nat. Neurosci. 8, 305–312 (2005).

    Article  CAS  Google Scholar 

  11. Lohmann, C. & Bonhoeffer, T. A role for local calcium signaling in rapid synaptic partner selection by dendritic filopodia. Neuron 59, 253–260 (2008).

    Article  CAS  Google Scholar 

  12. Dailey, M.E. & Smith, S.J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996).

    Article  CAS  Google Scholar 

  13. Marrs, G.S., Green, S.H. & Dailey, M.E. Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat. Neurosci. 4, 1006–1013 (2001).

    Article  CAS  Google Scholar 

  14. Saito, Y., Song, W.J. & Murakami, F. Preferential termination of corticorubral axons on spine-like dendritic protrusions in developing cat. J. Neurosci. 17, 8792–8803 (1997).

    Article  CAS  Google Scholar 

  15. Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat. Rev. Neurosci. 5, 24–34 (2004).

    Article  CAS  Google Scholar 

  16. Somogyi, P., Tamás, G., Lujan, R. & Buhl, E.H. Salient features of synaptic organization in the cerebral cortex. Brain Res. Brain Res. Rev. 26, 113–135 (1998).

    Article  CAS  Google Scholar 

  17. López-Bendito, G. et al. Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb. Cortex 14, 1122–1133 (2004).

    Article  Google Scholar 

  18. Kalisman, N., Silberberg, G. & Markram, H. The neocortical microcircuit as a tabula rasa. Proc. Natl. Acad. Sci. USA 102, 880–885 (2005).

    Article  CAS  Google Scholar 

  19. Shepherd, G.M. & Harris, K.M. Three-dimensional structure and composition of CA3 → CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J. Neurosci. 18, 8300–8310 (1998).

    Article  CAS  Google Scholar 

  20. Meyer, M.P. & Smith, S.J. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J. Neurosci. 26, 3604–3614 (2006).

    Article  CAS  Google Scholar 

  21. De Paola, V. et al. Cell type–specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49, 861–875 (2006).

    Article  CAS  Google Scholar 

  22. Ruthazer, E.S., Li, J. & Cline, H.T. Stabilization of axon branch dynamics by synaptic maturation. J. Neurosci. 26, 3594–3603 (2006).

    Article  CAS  Google Scholar 

  23. Ahmari, S.E., Buchanan, J. & Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci. 3, 445–451 (2000).

    Article  CAS  Google Scholar 

  24. Friedman, H.V., Bresler, T., Garner, C.C. & Ziv, N.E. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27, 57–69 (2000).

    Article  CAS  Google Scholar 

  25. Bresler, T. et al. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J. Neurosci. 24, 1507–1520 (2004).

    Article  CAS  Google Scholar 

  26. Kubota, Y., Hatada, S., Kondo, S., Karube, F. & Kawaguchi, Y. Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J. Neurosci. 27, 1139–1150 (2007).

    Article  CAS  Google Scholar 

  27. Knott, G.W., Quairiaux, C., Genoud, C. & Welker, E. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34, 265–273 (2002).

    Article  CAS  Google Scholar 

  28. Risher, W.C., Ostroff, L.E. & Harris, K.M. What dendritic filopodia induced by LTP encounter along their path through the neuropil of PN15 rat hippocampus. Abstr. Soc. Neurosci. 135.4 (2006).

  29. Ziv, N.E. & Garner, C.C. Cellular and molecular mechanisms of presynaptic assembly. Nat. Rev. Neurosci. 5, 385–399 (2004).

    Article  CAS  Google Scholar 

  30. Gerrow, K. et al. A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron 49, 547–562 (2006).

    Article  CAS  Google Scholar 

  31. Maas, C. et al. Neuronal cotransport of glycine receptor and the scaffold protein gephyrin. J. Cell Biol. 172, 441–451 (2006).

    Article  CAS  Google Scholar 

  32. Chattopadhyaya, B. et al. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54, 889–903 (2007).

    Article  CAS  Google Scholar 

  33. Di Cristo, G. et al. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat. Neurosci. 10, 1569–1577 (2007).

    Article  CAS  Google Scholar 

  34. Ahmari, S.E. & Smith, S.J. Knowing a nascent synapse when you see it. Neuron 34, 333–336 (2002).

    Article  CAS  Google Scholar 

  35. Portera-Cailliau, C., Pan, D.T. & Yuste, R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J. Neurosci. 23, 7129–7142 (2003).

    Article  CAS  Google Scholar 

  36. Richards, D.A. et al. Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proc. Natl. Acad. Sci. USA 102, 6166–6171 (2005).

    Article  CAS  Google Scholar 

  37. de Zeeuw, C.I., Ruigrok, T.J., Holstege, J.C., Jansen, H.G. & Voogd, J. Intracellular labeling of neurons in the medial accessory olive of the cat. II. Ultrastructure of dendritic spines and their GABAergic innervation. J. Comp. Neurol. 300, 478–494 (1990).

    Article  CAS  Google Scholar 

  38. Cope, D.W. et al. Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus. Neuroscience 109, 63–80 (2002).

    Article  CAS  Google Scholar 

  39. Pratt, K.G., Taft, C.E., Burbea, M. & Turrigiano, G.G. Dynamics underlying synaptic gain between pairs of cortical pyramidal neurons. Dev. Neurobiol. 68, 143–151 (2008).

    Article  Google Scholar 

  40. Sabo, S.L., Gomes, R.A. & McAllister, A.K. Formation of presynaptic terminals at predefined sites along axons. J. Neurosci. 26, 10813–10825 (2006).

    Article  CAS  Google Scholar 

  41. Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W. & Craig, A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    Article  CAS  Google Scholar 

  42. Chih, B., Engelman, H. & Scheiffele, P. Control of excitatory and inhibitory synapse formation by neuroligins. Science 307, 1324–1328 (2005).

    Article  CAS  Google Scholar 

  43. Chubykin, A.A. et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54, 919–931 (2007).

    Article  CAS  Google Scholar 

  44. Stepanyants, A., Tamás, G. & Chklovskii, D.B. Class-specific features of neuronal wiring. Neuron 43, 251–259 (2004).

    Article  CAS  Google Scholar 

  45. Thomson, A.M. & Morris, O.T. Selectivity in the inter-laminar connections made by neocortical neurones. J. Neurocytol. 31, 239–246 (2002).

    Article  Google Scholar 

  46. Karube, F., Kubota, Y. & Kawaguchi, Y. Axon branching and synaptic bouton phenotypes in GABAergic nonpyramidal cell subtypes. J. Neurosci. 24, 2853–2865 (2004).

    Article  CAS  Google Scholar 

  47. Shepherd, G.M., Raastad, M. & Andersen, P. General and variable features of varicosity spacing along unmyelinated axons in the hippocampus and cerebellum. Proc. Natl. Acad. Sci. USA 99, 6340–6345 (2002).

    Article  CAS  Google Scholar 

  48. Gähwiler, B.H. Organotypic monolayer cultures of nervous tissue. J. Neurosci. Methods 4, 329–342 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Szábo for kindly providing the GAD65-GFP mice, U.V. Nägerl for help with the experimental setup and comments on the manuscript, N. Stöhr and C. Huber for technical assistance, and T. Mrsic-Flögel, C. Lohmann and V. Stein for critical reading of the manuscript. This work was supported by the Max Planck Gesellschaft, the Alexander von Humboldt Stiftung, a Marie Curie Intra-European fellowship (C.J.W.) and the Boehringer Ingelheim Fonds (N.B.).

Author information

Authors and Affiliations

Authors

Contributions

C.J.W. designed and conducted the experiments and analyzed the data. N.B. carried out the experiments on glutamatergic boutons. C.J.W. and T.B. conceived the project and wrote the manuscript.

Corresponding author

Correspondence to Corette J Wierenga.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 725 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wierenga, C., Becker, N. & Bonhoeffer, T. GABAergic synapses are formed without the involvement of dendritic protrusions. Nat Neurosci 11, 1044–1052 (2008). https://doi.org/10.1038/nn.2180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing