Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Feedback of visual object information to foveal retinotopic cortex

Abstract

The mammalian visual system contains an extensive web of feedback connections projecting from higher cortical areas to lower areas, including primary visual cortex. Although multiple theories have been proposed, the role of these connections in perceptual processing is not understood. We found that the pattern of functional magnetic resonance imaging response in human foveal retinotopic cortex contained information about objects presented in the periphery, far away from the fovea, which has not been predicted by prior theories of feedback. This information was position invariant, correlated with perceptual discrimination accuracy and was found only in foveal, but not peripheral, retinotopic cortex. Our data cannot be explained by differential eye movements, activation from the fixation cross, or spillover activation from peripheral retinotopic cortex or from lateral occipital complex. Instead, our findings indicate that position-invariant object information from higher cortical areas is fed back to foveal retinotopic cortex, enhancing task performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example displays from Experiment 1.
Figure 2: ROIs in one example subject.
Figure 3: Mean correlations (±1 s.e.) for same (black bars) versus different (gray bars) categories and for same versus different locations for the four ROIs in Experiment 1.
Figure 4: Mean correlations (±1 s.e.) within and between categories (always between locations) for two ROIs in Experiment 2.
Figure 5: ROIs in one example subject and the corresponding mean correlations.
Figure 6: Correlations within and between categories (always between locations) for LOC and the foveal retinotopic cortex in Experiment 4, showing that task modulated object information more strongly in the foveal ROI than in LOC.
Figure 7: Time course and behavioral relevance of position-invariant information in foveal retinotopic ROI in Experiments 1 and 4.

Similar content being viewed by others

References

  1. Murray, S.O. & Wojciulik, E. Attention increases neural selectivity in the human lateral occipital complex. Nat. Neurosci. 7, 70–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Murray, S.O., Kersten, D., Olshausen, B.A., Schrater, P. & Woods, D.L. Shape perception reduces activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA 99, 15164–15169 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harrison, L.M., Stephan, K.E., Rees, G. & Friston, K.J. Extra-classical receptive field effects measured in striate cortex with fMRI. Neuroimage 34, 1199–1208 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Heinen, K., Jolij, J. & Lamme, V.A. Figure-ground segregation requires two distinct periods of activity in V1: a transcranial magnetic stimulation study. Neuroreport 16, 1483–1487 (2005).

    Article  PubMed  Google Scholar 

  5. Hupé, J.M. et al. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394, 784–787 (1998).

    Article  PubMed  Google Scholar 

  6. Rossi, A.F., Desimone, R. & Ungerleider, L.G. Contextual modulation in primary visual cortex of macaques. J. Neurosci. 21, 1698–1709 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Corthout, E. & Supèr, H. Contextual modulation in V1: the Rossi-Zipser controversy. Exp. Brain Res. 156, 118–123 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Ress, D. & Heeger, D.J. Neuronal correlates of perception in early visual cortex. Nat. Neurosci. 6, 414–420 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jehee, J.F.M., Roelfsema, P.R., Deco, G., Murre, J.M.J. & Lamme, V.A.F. Interactions between higher and lower visual areas improve shape selectivity of higher level neurons—explaining crowding phenomena. Brain Res. 1157, 167–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Supèr, H., Spekreijse, H. & Lamme, V.A.F. Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat. Neurosci. 4, 304–310 (2001).

    Article  PubMed  Google Scholar 

  11. Op de Beeck, H.P., Baker, C., DiCarlo, J. & Kanwisher, N. Discrimination training alters object representations in human extrastriate cortex. J. Neurosci. 26, 13025–13036 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haxby, J.V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Norman, K.A., Polyn, S.M., Detre, G.J. & Haxby, J.V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006).

    Article  PubMed  Google Scholar 

  14. Cox, D.D. & Savoy, R.L. Functional magnetic resonance imaging (fMRI) 'brain reading': detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19, 261–270 (2003).

    Article  PubMed  Google Scholar 

  15. Williams, M.A., Dang, S. & Kanwisher, N. Only some spatial patterns of fMRI response are read out in task performance. Nat. Neurosci. 10, 685–686 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 92, 8135–8139 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schwarzlose, R.F., Swisher, J.D., Dang, S. & Kanwisher, N. The distribution of category and location information across object-selective regions of visual cortex. Proc. Natl. Acad. Sci. USA 105, 4447–4452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olman, C.A., Inatib, S. & Heeger, D.J. The effect of large veins on spatial localization with GE BOLD at 3 T: displacement, not blurring. Neuroimage 34, 1126–1135 (2007).

    Article  PubMed  Google Scholar 

  19. Treue, S. & Martinez-Trujillo, J.C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Serences, J.T. & Boynton, G.M. Feature-based attentional modulations in the absence of direct visual stimulation. Neuron 55, 301–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Saenz, M., Buracas, G.T. & Boynton, G.M. Global effects of feature-based attention in human visual cortex. Nat. Neurosci. 5, 631–632 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Haynes, J.D. & Rees, G. Predicting the stream of consciousness from activity in human visual cortex. Curr. Biol. 15, 1301–1307 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Carlson, T.A., Schrater, P. & He, S. Patterns of activity in the categorical representations of objects. J. Cogn. Neurosci. 15, 704–717 (2003).

    Article  PubMed  Google Scholar 

  24. Angelucci, A. et al. Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22, 8633–8646 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bressler, D., Spotswood, N. & Whitney, D. Negative BOLD fMRI Response in the visual cortex carries precise stimulus-specific information. PLoS ONE 2, e410 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Merriam, E.P., Genovese, C.R. & Colby, C.L. Remapping in human visual cortex. J. Neurophysiol. 97, 1738–1755 (2007).

    Article  PubMed  Google Scholar 

  27. Slotnick, S.D., Thompson, W.L. & Kosslyn, S.M. Visual mental imagery induces retinotopically organized activation of early visual areas. Cereb. Cortex 15, 1570–1583 (2005).

    Article  PubMed  Google Scholar 

  28. Mumford, D. On the computational architecture of the neocortex. I. The role of the thalamo-cortical loop. Biol. Cybern. 65, 135–145 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Gilbert, C.D. & Sigman, M. Brain states: top-down influences in sensory processing. Neuron 54, 677–696 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, T.S. & Mumford, D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–1448 (2003).

    Article  PubMed  Google Scholar 

  31. Logothetis, N.K., Pauls, J., Augath, M.A., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Viswanathan, A. & Freeman, R.D. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat. Neurosci. 10, 1308–1312 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Wilke, M., Logothetis, N.K. & Leopold, D.A. Local field potential reflects perceptual suppression in monkey visual cortex. Proc. Natl. Acad. Sci. USA 103, 17507–17512 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dougherty, R.F. et al. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J. Vis. 3, 586–598 (2003).

    Article  PubMed  Google Scholar 

  35. Fischl, B., Sereno, M.I. & Dale, A.M. Cortical surface-based analysis. II. Inflation, flattening and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the members and friends of the Kanwisher laboratory for useful comments on the manuscript. M.A.W. was supported by a grant from the Australian National Health and Medical Research Council (C.J. Martin Fellowship) and H.P.O.d.B. was supported by the Research Foundation Flanders. This work was supported by grants from the US National Institutes of Health to N.K. (grants EY013455 and EY016159). We would also like to thank the Athinoula A. Martinos Imaging Center at the McGovern Institute for Brain Research for subsidizing the cost of scanning.

Author information

Authors and Affiliations

Authors

Contributions

M.A.W. conducted Experiments 1–3, 5 and 6, designed Experiment 4 and wrote the manuscript. C.I.B. and H.P.O.d.B. were involved in the design and implementation of all of the studies and writing the manuscript, and H.P.O.d.B. also created the stimuli. W.M.S. conducted Experiment 4. S.D. wrote specialized eye tracking analysis programs, programmed the experiments and helped with data collection. C.T. optimized the neuroimaging sequences and N.K. supervised the entire project, including writing the manuscript.

Corresponding author

Correspondence to Mark A Williams.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 931 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M., Baker, C., Op de Beeck, H. et al. Feedback of visual object information to foveal retinotopic cortex. Nat Neurosci 11, 1439–1445 (2008). https://doi.org/10.1038/nn.2218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing