Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The tumor suppressor Pml regulates cell fate in the developing neocortex

Abstract

The control of cell fate in neural progenitor cells is critical for nervous system development. Nevertheless, the processes involved are only partially known. We found that the expression of the tumor suppressor Pml was restricted to neural progenitor cells (NPCs) in the developing neocortex of the mouse. Notably, in Pml−/− cortices, the overall number of proliferating NPCs was increased and transition between the two major progenitor types, radial glial cells and basal progenitors, was impaired. This in turn resulted in reduced differentiation and an overall decrease in the thickness of the cortex wall. In NPCs, Pml regulated the subcellular distribution of the retinoblastoma protein (pRb) and the protein phosphatase 1α, triggering pRb dephosphorylation. Together, these findings reveal an unexpected role of Pml in controlling the function of NPCs in the CNS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pml expression is confined to neural progenitor/stem cells.
Figure 2: Pml regulates the size of the cerebral cortex.
Figure 3: Pml controls proliferation and cell cycle exit in neuronal progenitors.
Figure 4: Pml loss skews the composition of neural progenitors subtypes in the developing neocortex.
Figure 5: Differentiation is impaired in Pml−/− cortices.
Figure 6: Pml-deficient NPCs show increased proliferation and impaired differentiation in vitro.
Figure 7: Pml colocalizes and interacts with pRb.
Figure 8: Pml-mediated control of PP1α-dependent dephosphorylation of pRb in the NPCs.

Similar content being viewed by others

References

  1. Melnick, A. & Licht, J.D. Deconstructing a disease: RARalpha, its fusion partners and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93, 3167–3215 (1999).

    CAS  PubMed  Google Scholar 

  2. Salomoni, P. & Pandolfi, P.P. The role of PML in tumor suppression. Cell 108, 165–170 (2002).

    Article  CAS  Google Scholar 

  3. Ishov, A.M. et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol. 147, 221–234 (1999).

    Article  CAS  Google Scholar 

  4. Bernardi, R. & Pandolfi, P.P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 8, 1006–1016 (2007).

    Article  CAS  Google Scholar 

  5. Bischof, O. et al. Deconstructing PML-induced premature senescence. EMBO J. 21, 3358–3369 (2002).

    Article  CAS  Google Scholar 

  6. Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    Article  CAS  Google Scholar 

  8. Salomoni, P., Ferguson, B.J., Wyllie, A.H. & Rich, T. New insights into the role of PML in tumour suppression. Cell Res. 18, 622–640 (2008).

    Article  CAS  Google Scholar 

  9. Gurrieri, C. et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J. Natl. Cancer Inst. 96, 269–279 (2004).

    Article  CAS  Google Scholar 

  10. Scaglioni, P.P. et al. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126, 269–283 (2006).

    Article  CAS  Google Scholar 

  11. Trotman, L.C. et al. Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441, 523–527 (2006).

    Article  CAS  Google Scholar 

  12. Campbell, K. Cortical neuron specification: it has its time and place. Neuron 46, 373–376 (2005).

    Article  CAS  Google Scholar 

  13. Guillemot, F. Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr. Opin. Cell Biol. 17, 639–647 (2005).

    Article  CAS  Google Scholar 

  14. Dehay, C. & Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8, 438–450 (2007).

    Article  CAS  Google Scholar 

  15. Tramontin, A.D., Garcia-Verdugo, J.M., Lim, D.A. & Alvarez-Buylla, A. Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb. Cortex 13, 580–587 (2003).

    Article  Google Scholar 

  16. Gotz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  Google Scholar 

  17. Calegari, F., Haubensak, W., Haffner, C. & Huttner, W.B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci. 25, 6533–6538 (2005).

    Article  CAS  Google Scholar 

  18. Hevner, R.F. From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development. Mol. Neurobiol. 33, 33–50 (2006).

    Article  CAS  Google Scholar 

  19. Haubensak, W., Attardo, A., Denk, W. & Huttner, W.B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl. Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  Google Scholar 

  20. Arnold, S.J. et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 22, 2479–2484 (2008).

    Article  CAS  Google Scholar 

  21. Farkas, L.M. et al. Insulinoma-associated 1 has a pan-neurogenic role and promotes the generation and expansion of basal progenitors in the developing mouse neocortex. Neuron 60, 40–55 (2008).

    Article  CAS  Google Scholar 

  22. Sessa, A., Mao, C.A., Hadjantonakis, A.K., Klein, W.H. & Broccoli, V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60, 56–69 (2008).

    Article  CAS  Google Scholar 

  23. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751 (2006).

    Article  CAS  Google Scholar 

  24. Ferland, R.J., Cherry, T.J., Preware, P.O., Morrisey, E.E. & Walsh, C.A. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J. Comp. Neurol. 460, 266–279 (2003).

    Article  CAS  Google Scholar 

  25. Potten, C.S. & Loeffler, M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020 (1990).

    CAS  PubMed  Google Scholar 

  26. Reynolds, B.A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    Article  CAS  Google Scholar 

  27. Condemine, W. et al. Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res. 66, 6192–6198 (2006).

    Article  CAS  Google Scholar 

  28. Alcalay, M. et al. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol. Cell. Biol. 18, 1084–1093 (1998).

    Article  CAS  Google Scholar 

  29. Labbaye, C. et al. Expression and role of PML gene in normal adult hematopoiesis: functional interaction between PML and Rb proteins in erythropoiesis. Oncogene 18, 3529–3540 (1999).

    Article  CAS  Google Scholar 

  30. Mallette, F.A., Goumard, S., Gaumont-Leclerc, M.F., Moiseeva, O. & Ferbeyre, G. Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene 23, 91–99 (2004).

    Article  CAS  Google Scholar 

  31. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  Google Scholar 

  32. Lipinski, M.M. & Jacks, T. The retinoblastoma gene family in differentiation and development. Oncogene 18, 7873–7882 (1999).

    Article  CAS  Google Scholar 

  33. Ferguson, K.L. et al. Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO J. 21, 3337–3346 (2002).

    Article  CAS  Google Scholar 

  34. Marino, S., Hoogervoorst, D., Brandner, S. & Berns, A. Rb and p107 are required for normal cerebellar development and granule cell survival, but not for Purkinje cell persistence. Development 130, 3359–3368 (2003).

    Article  CAS  Google Scholar 

  35. MacPherson, D. et al. Cell type–specific effects of Rb deletion in the murine retina. Genes Dev. 18, 1681–1694 (2004).

    Article  CAS  Google Scholar 

  36. Ferguson, K.L. et al. A cell-autonomous requirement for the cell cycle regulatory protein, Rb, in neuronal migration. EMBO J. 24, 4381–4391 (2005).

    Article  CAS  Google Scholar 

  37. McClellan, K.A. & Slack, R.S. Specific in vivo roles for E2Fs in differentiation and development. Cell Cycle 6, 2917–2927 (2007).

    Article  CAS  Google Scholar 

  38. Alberts, A.S., Thorburn, A.M., Shenolikar, S., Mumby, M.C. & Feramisco, J.R. Regulation of cell cycle progression and nuclear affinity of the retinoblastoma protein by protein phosphatases. Proc. Natl. Acad. Sci. USA 90, 388–392 (1993).

    Article  CAS  Google Scholar 

  39. Durfee, T. et al. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555–569 (1993).

    Article  CAS  Google Scholar 

  40. Kim, T.H., Goodman, J., Anderson, K.V. & Niswander, L. Phactr4 regulates neural tube and optic fissure closure by controlling PP1-, Rb- and E2F1-regulated cell-cycle progression. Dev. Cell 13, 87–102 (2007).

    Article  Google Scholar 

  41. Molofsky, A.V., Pardal, R. & Morrison, S.J. Diverse mechanisms regulate stem cell self-renewal. Curr. Opin. Cell Biol. 16, 700–707 (2004).

    Article  CAS  Google Scholar 

  42. Wang, Z.G. et al. Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547–1551 (1998).

    Article  CAS  Google Scholar 

  43. Yoshida, H. et al. PML-retinoic acid receptor alpha inhibits PML IV enhancement of PU.1-induced C/EBPepsilon expression in myeloid differentiation. Mol. Cell. Biol. 27, 5819–5834 (2007).

    Article  CAS  Google Scholar 

  44. Wang, Z.G. et al. PML is essential for multiple apoptotic pathways. Nat. Genet. 20, 266–272 (1998).

    Article  CAS  Google Scholar 

  45. Cunningham, J.J. & Roussel, M.F. Cyclin-dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differ. 12, 387–396 (2001).

    CAS  PubMed  Google Scholar 

  46. Vanderluit, J.L. et al. p107 regulates neural precursor cells in the mammalian brain. J. Cell Biol. 166, 853–863 (2004).

    Article  CAS  Google Scholar 

  47. Calegari, F. & Huttner, W.B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci. 116, 4947–4955 (2003).

    Article  CAS  Google Scholar 

  48. Dohadwala, M. et al. Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proc. Natl. Acad. Sci. USA 91, 6408–6412 (1994).

    Article  CAS  Google Scholar 

  49. Berndt, N., Dohadwala, M. & Liu, C.W. Constitutively active protein phosphatase 1alpha causes Rb-dependent G1 arrest in human cancer cells. Curr. Biol. 7, 375–386 (1997).

    Article  CAS  Google Scholar 

  50. Beullens, M., Van Eynde, A., Stalmans, W. & Bollen, M. The isolation of novel inhibitory polypeptides of protein phosphatase 1 from bovine thymus nuclei. J. Biol. Chem. 267, 16538–16544 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A special thank to P.P. Pandolfi (Beth Israel Deaconess Cancer Center) and R. Hevner (Seattle Children's Hospital Research Institute) for the Pml−/− mouse line and the antibody to Tbr2, respectively. We particularly thank D. Dinsdale, J. Edwards and R. Edwards (Medical Research Council Toxicology Unit) for support and assistance with immunohistochemistry. We also thank C. Watson (University of Cambridge), D. Read, G. Melino, R. Knight, and M. Capasso (Medical Research Council Toxicology Unit) for critical discussions. P.S., P.N., T.R. and C.B. are supported by the Medical Research Council. C.B. is a PhD, student at the University of Leicester.

Author information

Authors and Affiliations

Authors

Contributions

T.R. and P.S. designed and performed the experiments. C.B. performed a number of experments. P.N. provided expertise and contributed to experimental design and discussion. T.R. contributed to the writing of the manuscript. P.S. supervised the research project and wrote the manuscript.

Corresponding author

Correspondence to Paolo Salomoni.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 15909 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regad, T., Bellodi, C., Nicotera, P. et al. The tumor suppressor Pml regulates cell fate in the developing neocortex. Nat Neurosci 12, 132–140 (2009). https://doi.org/10.1038/nn.2251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing