Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Linking genes underlying deafness to hair-bundle development and function

Abstract

The identification of mutations underlying monogenic, early-onset forms of deafness in humans has provided unprecedented insight into the molecular mechanisms of hearing in the peripheral auditory system. The molecules involved in the development and function of the cochlea eluded characterization until recently owing to the scarcity of the principal cell types present. The genetic approach has circumvented this problem and succeeded in identifying proteins and deciphering some of the molecular complexes that operate in these cells. In combination with mouse models, the genetic approach is now revealing some of the principles underlying the development and physiology of the cochlea. Focusing on the hair bundle, the mechanosensory device of the sensory hair cell, we highlight recent advances in understanding the way in which the hair bundle is formed, how it operates as a mechanotransducer and how it processes sound. In particular, we discuss how these findings confer a central role on the various hair-bundle links in these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hair bundle structure and function.
Figure 2: Hair-bundle development and hair-bundle phenotypes in mouse mutants.

Similar content being viewed by others

References

  1. Bregman, A.S. Auditory Scene Analysis: The Perceptual Organization of Sound (MIT Press, Cambridge, Massachusetts, USA, 1990).

    Book  Google Scholar 

  2. Moore, B.C., Tyler, L.K. & Marslen-Wilson, W. (eds.). The Perception of Speech: From Sound to Meaning vol. 363 (Royal Society, London, 2008).

    Google Scholar 

  3. Ohm, G.S. Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Annalen der Physik und Chemie 59, 513–565 (1843).

    Article  Google Scholar 

  4. von Helmholtz, H. Die Lehre von den Tonempfindungen als physiologische Grundlage fur die Theorie der Musik [On the Sensations of Tone as a Physiological Basis for the Theory of Music] (Vieweg, Braunschweig, 1862).

    Google Scholar 

  5. Gold, T. Hearing. II. The physical basis of the action of the cochlea. Proc. R. Soc. Lond. B 135, 492–498 (1948).

    Google Scholar 

  6. Petit, C. Genes responsible for human hereditary deafness: symphony of a thousand. Nat. Genet. 14, 385–391 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Frolenkov, G.I., Belyantseva, I.A., Friedman, T.B. & Griffith, A.J. Genetic insights into the morphogenesis of inner ear hair cells. Nat. Rev. Genet. 5, 489–498 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Friedman, L.M., Dror, A.A. & Avraham, K.B. Mouse models to study inner ear development and hereditary hearing loss. Int. J. Dev. Biol. 51, 609–631 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Brown, S.D., Hardisty-Hughes, R.E. & Mburu, P. Quiet as a mouse: dissecting the molecular and genetic basis of hearing. Nat. Rev. Genet. 9, 277–290 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Richardson, G.P., Lukashkin, A.N. & Russell, I.J. The tectorial membrane: one slice of a complex cochlear sandwich. Curr. Opin. Otolaryngol. Head Neck Surg. 16, 458–464 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pickles, J.O., Comis, S.D. & Osborne, M.P. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear. Res. 15, 103–112 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Furness, D.N. & Hackney, C.M. Cross-links between stereocilia in the guinea pig cochlea. Hear. Res. 18, 177–188 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Tsuprun, V. & Santi, P. Structure of outer hair cell stereocilia links in the chinchilla. J. Neurocytol. 27, 517–528 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Tsuprun, V. & Santi, P. Structure of outer hair cell stereocilia side and attachment links in the chinchilla cochlea. J. Histochem. Cytochem. 50, 493–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Tsuprun, V., Schachern, P.A., Cureoglu, S. & Paparella, M. Structure of the stereocilia side links and morphology of auditory hair bundle in relation to noise exposure in the chinchilla. J. Neurocytol. 32, 1117–1128 (2003).

    Article  PubMed  Google Scholar 

  16. Goodyear, R.J., Marcotti, W., Kros, C.J. & Richardson, G.P. Development and properties of stereociliary link types in hair cells of the mouse cochlea. J. Comp. Neurol. 485, 75–85 (2005).

    Article  PubMed  Google Scholar 

  17. Hudspeth, A.J. Extracellular current flow and the site of transduction by vertebrate hair cells. J. Neurosci. 2, 1–10 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jaramillo, F. & Hudspeth, A.J. Localization of the hair cell's transduction channels at the hair bundle's top by iontophoretic application of a channel blocker. Neuron 7, 409–420 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Lumpkin, E.A. & Hudspeth, A.J. Detection of Ca2+ entry through mechanosensitive channels localizes the site of mechanoelectrical transduction in hair cells. Proc. Natl. Acad. Sci. USA 92, 10297–10301 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Corey, D.P. & Hudspeth, A.J. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3, 962–976 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Assad, J.A., Shepherd, G.M. & Corey, D.P. Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7, 985–994 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Howard, J. & Hudspeth, A.J. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc. Natl. Acad. Sci. USA 84, 3064–3068 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crawford, A.C. & Fettiplace, R. The mechanical properties of ciliary bundles of turtle cochlear hair cells. J. Physiol. (Lond.) 364, 359–379 (1985).

    Article  CAS  Google Scholar 

  24. Ricci, A.J., Crawford, A.C. & Fettiplace, R. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J. Neurosci. 20, 7131–7142 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin, P., Bozovic, D., Choe, Y. & Hudspeth, A.J. Spontaneous oscillation by hair bundles of the bullfrog's sacculus. J. Neurosci. 23, 4533–4548 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin, P. & Hudspeth, A.J. Active hair-bundle movements can amplify a hair cell's response to oscillatory mechanical stimuli. Proc. Natl. Acad. Sci. USA 96, 14306–14311 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin, P. & Hudspeth, A.J. Compressive nonlinearity in the hair bundle's active response to mechanical stimulation. Proc. Natl. Acad. Sci. USA 98, 14386–14391 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kennedy, H.J., Crawford, A.C. & Fettiplace, R. Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433, 880–883 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Eatock, R.A., Corey, D.P. & Hudspeth, A.J. Adaptation of mechanoelectrical transduction in hair cells of the bullfrog's sacculus. J. Neurosci. 7, 2821–2836 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Assad, J.A., Hacohen, N. & Corey, D.P. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc. Natl. Acad. Sci. USA 86, 2918–2922 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crawford, A.C., Evans, M.G. & Fettiplace, R. Activation and adaptation of transducer currents in turtle hair cells. J. Physiol. (Lond.) 419, 405–434 (1989).

    Article  CAS  Google Scholar 

  32. Crawford, A.C., Evans, M.G. & Fettiplace, R. The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J. Physiol. (Lond.) 434, 369–398 (1991).

    Article  CAS  Google Scholar 

  33. Hudspeth, A.J. Making an effort to listen: mechanical amplification in the ear. Neuron 59, 530–545 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheung, E.L. & Corey, D.P. Ca2+ changes the force sensitivity of the hair-cell transduction channel. Biophys. J. 90, 124–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Beurg, M., Nam, J.H., Crawford, A. & Fettiplace, R. The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells. Biophys. J. 94, 2639–2653 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tilney, L.G., Tilney, M.S. & DeRosier, D.J. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu. Rev. Cell Biol. 8, 257–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Cotanche, D.A. & Corwin, J.T. Stereociliary bundles reorient during hair cell development and regeneration in the chick cochlea. Hear. Res. 52, 379–402 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Kaltenbach, J.A., Falzarano, P.R. & Simpson, T.H. Postnatal development of the hamster cochlea. II. Growth and differentiation of stereocilia bundles. J. Comp. Neurol. 350, 187–198 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Boeda, B. et al. Myosin VIIa, harmonin, and cadherin 23, three Usher I gene products, cooperate to shape the sensory hair cell bundle. EMBO J. 21, 6689–6699 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Michalski, N. et al. Molecular characterization of the ankle-link complex in cochlear hair cells and its role in the hair bundle functioning. J. Neurosci. 27, 6478–6488 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manor, U. & Kachar, B. Dynamic length regulation of sensory stereocilia. Semin. Cell Dev. Biol. 19, 502–510 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Curtin, J.A. et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr. Biol. 13, 1129–1133 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Montcouquiol, M. et al. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423, 173–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Lu, X. et al. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 430, 93–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Y., Guo, N. & Nathans, J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J. Neurosci. 26, 2147–2156 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qian, D. et al. Wnt5a functions in planar cell polarity regulation in mice. Dev. Biol. 306, 121–133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Etheridge, S.L. et al. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet. 4, e1000259 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yamamoto, S. et al. Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev. Cell 15, 23–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, J. et al. Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nat. Genet. 37, 980–985 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Montcouquiol, M. et al. Asymmetric localization of Vangl2 and Fz3 indicate novel mechanisms for planar cell polarity in mammals. J. Neurosci. 26, 5265–5275 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ross, A.J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 37, 1135–1140 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Jones, C. et al. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat. Genet. 40, 69–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Habas, R., Dawid, I.B. & He, X. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 17, 295–309 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Furness, D.N., Richardson, G.P. & Russell, I.J. Stereociliary bundle morphology in organotypic cultures of the mouse cochlea. Hear. Res. 38, 95–109 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Pickles, J.O., von Perger, M., Rouse, G.W. & Brix, J. The development of links between stereocilia in hair cells of the chick basilar papilla. Hear. Res. 54, 153–163 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Waguespack, J., Salles, F.T., Kachar, B. & Ricci, A.J. Stepwise morphological and functional maturation of mechanotransduction in rat outer hair cells. J. Neurosci. 27, 13890–13902 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goodyear, R.J. & Richardson, G.P. A novel antigen sensitive to calcium chelation that is associated with the tip links and kinocilial links of sensory hair bundles. J. Neurosci. 23, 4878–4887 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428, 950–955 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Sollner, C. et al. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428, 955–959 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. Lagziel, A. et al. Spatiotemporal pattern and isoforms of cadherin 23 in wild type and waltzer mice during inner ear hair cell development. Dev. Biol. 280, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Michel, V. et al. Cadherin 23 is a component of the transient lateral links in the developing hair bundles of cochlear sensory cells. Dev. Biol. 280, 281–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Ahmed, Z.M. et al. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J. Neurosci. 26, 7022–7034 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kazmierczak, P. et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449, 87–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Adato, A. et al. Usherin, the defective protein in Usher syndrome type IIA, is likely to be a component of interstereocilia ankle links in the inner ear sensory cells. Hum. Mol. Genet. 14, 3921–3932 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. McGee, J. et al. The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J. Neurosci. 26, 6543–6553 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goodyear, R.J. et al. A receptor-like inositol lipid phosphatase is required for the maturation of developing cochlear hair bundles. J. Neurosci. 23, 9208–9219 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Verpy, E. et al. Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 456, 255–258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lefevre, G. et al. A core cochlear phenotype in USH1 mouse mutants implicates fibrous links of the hair bundle in its cohesion, orientation and differential growth. Development 135, 1427–1437 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Leibovici, M., Safieddine, S. & Petit, C. Mouse models of human hereditary deafness. Curr. Top. Dev. Biol. 84, 385–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Furness, D.N., Mahendrasingam, S., Ohashi, M., Fettiplace, R. & Hackney, C.M. The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane. J. Neurosci. 28, 6342–6353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Henn, A. & De La Cruz, E.M. Vertebrate myosin VIIb is a high duty ratio motor adapted for generating and maintaining tension. J. Biol. Chem. 280, 39665–39676 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. El-Amraoui, A., Bahloul, A. & Petit, C. Myosin VII. in Myosins: A Superfamily of Molecular Motors vol. 7 (Coluccio, L.M., ed.) 353–373 (Springer, New York, 2008).

    Google Scholar 

  73. Wang, A. et al. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280, 1447–1451 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Mburu, P. et al. Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat. Genet. 34, 421–428 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Donaudy, F. et al. Espin gene (ESPN) mutations associated with autosomal dominant hearing loss cause defects in microvillar elongation or organisation. J. Med. Genet. 43, 157–161 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Naz, S. et al. Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J. Med. Genet. 41, 591–595 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Prosser, H.M., Rzadzinska, A.K., Steel, K.P. & Bradley, A. Mosaic complementation demonstrates a regulatory role for myosin VIIa in actin dynamics of stereocilia. Mol. Cell. Biol. 28, 1702–1712 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Nayak, G.D., Ratnayaka, H.S., Goodyear, R.J. & Richardson, G.P. Development of the hair bundle and mechanotransduction. Int. J. Dev. Biol. 51, 597–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Oganesian, A. et al. Protein tyrosine phosphatase RQ is a phosphatidylinositol phosphatase that can regulate cell survival and proliferation. Proc. Natl. Acad. Sci. USA 100, 7563–7568 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Takenawa, T. & Itoh, T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta 1533, 190–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Kros, C.J. et al. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat. Neurosci. 5, 41–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Tilney, L.G., Tilney, M.S. & Cotanche, D.A. Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereociliary lengths is generated. J. Cell Biol. 106, 355–365 (1988).

    Article  CAS  PubMed  Google Scholar 

  83. Verpy, E. et al. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat. Genet. 26, 51–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Di Palma, F. et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl. Acad. Sci. USA 99, 14994–14999 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grimm, C. et al. A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc. Natl. Acad. Sci. USA 104, 19583–19588 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nagata, K. et al. The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc. Natl. Acad. Sci. USA 105, 353–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. van Aken, A.F. et al. TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J. Physiol. (Lond.) 586, 5403–5418 (2008).

    Article  CAS  Google Scholar 

  88. Maroto, R. et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 7, 179–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Gottlieb, P. et al. Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch. 455, 1097–1103 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Shin, J.B. et al. Hair bundles are specialized for ATP delivery via creatine kinase. Neuron 53, 371–386 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Holt, J.R. et al. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108, 371–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Stauffer, E.A. et al. Fast adaptation in vestibular hair cells requires myosin-1c activity. Neuron 47, 541–553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Verpy, E. et al. Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nat. Genet. 29, 345–349 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Legan, P.K. et al. A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28, 273–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. He, D.Z., Jia, S. & Dallos, P. Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature 429, 766–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Chan, D.K. & Hudspeth, A.J. Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat. Neurosci. 8, 149–155 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mederos y Schnitzler, M. et al. Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J. 27, 3092–3103 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Farge, E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Petit, C., Levilliers, J. & Hardelin, J.-P. Molecular genetics of hearing loss. Annu. Rev. Genet. 35, 589–646 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Kros, C.J., Rüsch, A. & Richardson, G.P. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc. Roy. Soc. Lond. B 249, 185–193 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' research was supported by grants from European Commission FP6 Integrated Project EuroHear LSHG-CT-2004-512063 (C.P. & G.R.), Fondation Raymonde et Guy Strittmatter (C.P.), Usher FAUN Stiftung (C.P.), Ernst-Jung Stiftung für Medizin (C.P.), Louis-Jeantet for Medicine Foundation (C.P.) and the Wellcome Trust (G.R.). The authors would like to thank V. Michel and R. Goodyear for their help in preparing the figures, A. Forge for the scanning electron micrographs in Figure 1, J. Levilliers for help in the preparation of the document and J.-P. Hardelin for criticism of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christine Petit or Guy P Richardson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, C., Richardson, G. Linking genes underlying deafness to hair-bundle development and function. Nat Neurosci 12, 703–710 (2009). https://doi.org/10.1038/nn.2330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing