Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences

Abstract

Light microscopy can be applied in vivo and can sample large tissue volumes, features crucial for the study of single neurons and neural circuits. However, light microscopy per se is diffraction-limited in resolution, and the substructure of core signaling compartments of neuronal circuits—axons, presynaptic active zones, postsynaptic densities and dendritic spines—can be only insufficiently characterized by standard light microscopy. Recently, several forms of super-resolution light microscopy breaking the diffraction-imposed resolution limit have started to allow highly resolved, dynamic imaging in the cell-biologically highly relevant 10–100 nanometer range ('mesoscale'). New, sometimes surprising answers concerning how protein mobility and protein architectures shape neuronal communication have already emerged. Here we start by briefly introducing super-resolution microscopy techniques, before we describe their use in the analysis of neuronal compartments. We conclude with long-term prospects for super-resolution light microscopy in the molecular and cellular neurosciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of main super-resolution techniques.
Figure 2: Super resolution microscopy reveals the structure of axonal cytoskeleton and active zone cytomatrix of Drosophila synapses.
Figure 3: Dynamic changes in spine morphology and actin distribution.
Figure 4: Examples of single-particle-tracking PALM and three-dimensional STORM imaging.

Similar content being viewed by others

References

  1. Sigrist, S.J. & Sabatini, B.L. Optical super-resolution microscopy in neurobiology. Curr. Opin. Neurobiol. 22, 86–93 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Toomre, D. & Bewersdorf, J. A new wave of cellular imaging. Annu. Rev. Cell Dev. Biol. 26, 285–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gustafsson, M.G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fiolka, R., Shao, L., Rego, E.H., Davidson, M.W. & Gustafsson, M.G. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc. Natl. Acad. Sci. USA 109, 5311–5315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Meyer, L. et al. Dual-color STED microscopy at 30-nm focal-plane resolution. Small 4, 1095–1100 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Tønnesen, J. & Nagerl, U.V. Superresolution imaging for neuroscience. Exp. Neurol. 242, 33–40 (2013).

    Article  PubMed  Google Scholar 

  13. Hess, S.T., Girirajan, T.P. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patterson, G.H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Patterson, G., Davidson, M., Manley, S. & Lippincott-Schwartz, J. Superresolution imaging using single-molecule localization. Annu. Rev. Phys. Chem. 61, 345–367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 6172–6176 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. York, A.G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 9, 749–754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hein, B., Willig, K.I. & Hell, S.W. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc. Natl. Acad. Sci. USA 105, 14271–14276 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jones, S.A., Shim, S.H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8, 499–508 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Bückers, J., Wildanger, D., Vicidomini, G., Kastrup, L. & Hell, S.W. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt. Express 19, 3130–3143 (2011).

    Article  PubMed  CAS  Google Scholar 

  25. Lichtman, J.W. & Denk, W. The big and the small: challenges of imaging the brain's circuits. Science 334, 618–623 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Arenkiel, B.R. & Ehlers, M.D. Molecular genetics and imaging technologies for circuit-based neuroanatomy. Nature 461, 900–907 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arenkiel, B.R. et al. Activity-induced remodeling of olfactory bulb microcircuits revealed by monosynaptic tracing. PLoS ONE 6, e29423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson, J.R. et al. A computational framework for ultrastructural mapping of neural circuitry. PLoS Biol. 7, e1000074 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Anderson, J.R. et al. Exploring the retinal connectome. Mol. Vis. 17, 355–379 (2011).

    PubMed  PubMed Central  Google Scholar 

  30. Micheva, K.D. & Smith, S.J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lakadamyali, M., Babcock, H., Bates, M., Zhuang, X. & Lichtman, J. 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS ONE 7, e30826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Saka, S. & Rizzoli, S.O. Super-resolution imaging prompts re-thinking of cell biology mechanisms: selected cases using stimulated emission depletion microscopy. Bioessays 34, 386–395 (2012).

    Article  PubMed  Google Scholar 

  35. Sieber, J.J. et al. Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317, 1072–1076 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Bar-On, D. et al. Super-resolution imaging reveals the internal architecture of nano-sized syntaxin clusters. J. Biol. Chem. 287, 27158–27167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van den Bogaart, G. et al. Membrane protein sequestering by ionic protein-lipid interactions. Nature 479, 552–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aoyagi, K. et al. The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J. Biol. Chem. 280, 17346–17352 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R. & Hell, S.W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Hua, Y. et al. A readily retrievable pool of synaptic vesicles. Nat. Neurosci. 14, 833–839 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt, R. et al. Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5, 539–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Sochacki, K.A. et al. Imaging the post-fusion release and capture of a vesicle membrane protein. Nat Commun. 3, 1154 (2012).

    Article  PubMed  CAS  Google Scholar 

  43. Südhof, T.C. The presynaptic active zone. Neuron 75, 11–25 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sigrist, S.J. & Schmitz, D. Structural and functional plasticity of the cytoplasmic active zone. Curr. Opin. Neurobiol. 21, 144–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Neher, E. & Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Jiao, W., Masich, S., Franzen, O. & Shupliakov, O. Two pools of vesicles associated with the presynaptic cytosolic projection in Drosophila neuromuscular junctions. J. Struct. Biol. 172, 389–394 (2010).

    Article  PubMed  Google Scholar 

  47. Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Wagh, D.A. et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49, 833–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Fouquet, W. et al. Maturation of active zone assembly by Drosophila Bruchpilot. J. Cell Biol. 186, 129–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hallermann, S. et al. Naked dense bodies provoke depression. J. Neurosci. 30, 14340–14345 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, K.S. et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 334, 1565–1569 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Owald, D. et al. A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila. J. Cell Biol. 188, 565–579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frank, T. et al. Bassoon and the synaptic ribbon organize Ca2+ channels and vesicles to add release sites and promote refilling. Neuron 68, 724–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bosch, M. & Hayashi, Y. Structural plasticity of dendritic spines. Curr. Opin. Neurobiol. 22, 383–388 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Kwon, H.B. & Sabatini, B.L. Glutamate induces de novo growth of functional spines in developing cortex. Nature 474, 100–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harnett, M.T., Makara, J.K., Spruston, N., Kath, W.L. & Magee, J.C. Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491, 599–602 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shim, S.H. et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci. USA 109, 13978–13983 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nägerl, U.V., Willig, K.I., Hein, B., Hell, S.W. & Bonhoeffer, T. Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. USA 105, 18982–18987 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Berning, S., Willig, K.I., Steffens, H., Dibaj, P. & Hell, S.W. Nanoscopy in a living mouse brain. Science 335, 551 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Urban, N.T., Willig, K.I., Hell, S.W. & Nagerl, U.V. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101, 1277–1284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Frost, N.A., Shroff, H., Kong, H., Betzig, E. & Blanpied, T.A. Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67, 86–99 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tatavarty, V., Kim, E.J., Rodionov, V. & Yu, J. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PLoS ONE 4, e7724 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Izeddin, I. et al. Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS ONE 6, e15611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tatavarty, V., Das, S. & Yu, J. Polarization of actin cytoskeleton is reduced in dendritic protrusions during early spine development in hippocampal neuron. Mol. Biol. Cell 23, 3167–3177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gold, M.G. A frontier in the understanding of synaptic plasticity: solving the structure of the postsynaptic density. Bioessays 34, 599–608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. MacGillavry, H.D., Kerr, J.M. & Blanpied, T.A. Lateral organization of the postsynaptic density. Mol. Cell Neurosci. 48, 321–331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Newpher, T.M. & Ehlers, M.D. Glutamate receptor dynamics in dendritic microdomains. Neuron 58, 472–497 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Triller, A. & Choquet, D. New concepts in synaptic biology derived from single-molecule imaging. Neuron 59, 359–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Cognet, L., Groc, L., Lounis, B. & Choquet, D. Multiple routes for glutamate receptor trafficking: surface diffusion and membrane traffic cooperate to bring receptors to synapses. Sci. STKE 2006, pe13 (2006).

    Article  PubMed  Google Scholar 

  72. Triller, A. & Choquet, D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move!. Trends Neurosci. 28, 133–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Choquet, D. Fast AMPAR trafficking for a high-frequency synaptic transmission. Eur. J. Neurosci. 32, 250–260 (2010).

    Article  PubMed  Google Scholar 

  74. Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kerr, J.M. & Blanpied, T.A. Subsynaptic AMPA receptor distribution is acutely regulated by actin-driven reorganization of the postsynaptic density. J. Neurosci. 32, 658–673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hoze, N. et al. Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging. Proc. Natl. Acad. Sci. USA 109, 17052–17057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Juette, M.F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5, 527–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, M. et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat. Methods 9, 727–729 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. van de Linde, S., Wolter, S., Heilemann, M. & Sauer, M. The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. J. Biotechnol. 149, 260–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Lau, L., Lee, Y.L., Sahl, S.J., Stearns, T. & Moerner, W.E. STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophys. J. 102, 2926–2935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Opazo, F. et al. Aptamers as potential tools for super-resolution microscopy. Nat. Methods 9, 938–939 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Watanabe, S. et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods 8, 80–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Nanguneri, S., Flottmann, B., Horstmann, H., Heilemann, M. & Kuner, T. Three-dimensional, tomographic super-resolution fluorescence imaging of serially sectioned thick samples. PLoS ONE 7, e38098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rostaing, P. et al. Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur. J. Neurosci. 24, 3463–3474 (2006).

    Article  PubMed  Google Scholar 

  88. Rueckel, M., Mack-Bucher, J.A. & Denk, W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl. Acad. Sci. USA 103, 17137–17142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ji, N., Sato, T.R. & Betzig, E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc. Natl. Acad. Sci. USA 109, 22–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Gould, T.J., Burke, D., Bewersdorf, J. & Booth, M.J. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express 20, 20998–21009 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kner, P., Chhun, B.B., Griffis, E.R., Winoto, L. & Gustafsson, M.G. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6, 339–342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gustafsson, M.G. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schmidt, R. et al. Mitochondrial cristae revealed with focused light. Nano Lett. 9, 2508–2510 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Wildanger, D., Medda, R., Kastrup, L. & Hell, S.W. A compact STED microscope providing 3D nanoscale resolution. J. Microsc. 236, 35–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Xu, K., Babcock, H.P. & Zhuang, X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods 9, 185–188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hess, S.T. et al. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc. Natl. Acad. Sci. USA 104, 17370–17375 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wombacher, R. et al. Live-cell super-resolution imaging with trimethoprim conjugates. Nat. Methods 7, 717–719 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Shao, L., Kner, P., Rego, E.H. & Gustafsson, M.G. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods 8, 1044–1046 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Bates, M., Dempsey, G.T., Chen, K.H. & Zhuang, X. Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection. Chemphyschem 13, 99–107 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Wilmes, S. et al. Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane. Angew. Chem. Int. Ed. Engl. 51, 4868–4871 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Choquet, T. Kuner and S. Smith for sharing unpublished data and for scientific discussions. We thank T.A. Blanpied, H. Ewers, S. Hell, V. Nägerl, O. Shupliakov and X. Zhuang for permission to use their work. The authors are supported by grants from the Deutsche Forschungsgemeinschaft (TP A3/SFB 958; SI849 7-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan J Sigrist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maglione, M., Sigrist, S. Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat Neurosci 16, 790–797 (2013). https://doi.org/10.1038/nn.3403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing