Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Act1 mediates IL-17–induced EAE pathogenesis selectively in NG2+ glial cells

Abstract

Interleukin 17 (IL-17) is a signature cytokine of Th17 cells. We previously reported that deletion of NF-κB activator 1 (Act1), the key transducer of IL-17 receptor signaling, from the neuroectodermal lineage in mice (neurons, oligodendrocytes and astrocytes) results in attenuated severity of experimental autoimmune encephalomyelitis (EAE). Here we examined the cellular basis of this observation. EAE disease course was unaffected by deletion of Act1 in neurons or mature oligodendrocytes, and Act1 deletion in astrocytes only modestly affected disease course. Deletion of Act1 in NG2+ glia resulted in markedly reduced EAE severity. Furthermore, IL-17 induced characteristic inflammatory mediator expression in NG2+ glial cells. IL-17 also exhibited strong inhibitory effects on the maturation of oligodendrocyte lineage cells in vitro and reduced their survival. These data identify NG2+ glia as the major CNS cellular target of IL-17 in EAE. The sensitivity of oligodendrocyte lineage cells to IL-17–mediated toxicity further suggests a direct link between inflammation and neurodegeneration in multiple sclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ablation of Act1 in astrocytes ameliorates autoimmune encephalomyelitis.
Figure 2: Neuronal Act1 is dispensable for EAE development.
Figure 3: Ablation of Act1 in oligodendrocyte lineage ameliorates autoimmune encephalomyelitis.
Figure 4: Act1 in mature oligodendrocytes is dispensable for the pathogenesis of EAE.
Figure 5: Cytotoxic and inflammatory effects of IL-17–induced Act1-mediated signaling on oligodendroglia.
Figure 6: IL-17 induces cell apoptosis in an Act1- and FADD-dependent pathway.

Similar content being viewed by others

References

  1. Sawcer, S. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Becher, B., Bechmann, I. & Greter, M. Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J. Mol. Med. (Berl) 84, 532–543 (2006).

    CAS  Google Scholar 

  3. Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 23, 683–747 (2005).

    CAS  PubMed  Google Scholar 

  4. Steinman, L. Multiple sclerosis: a two-stage disease. Nat. Immunol. 2, 762–764 (2001).

    CAS  PubMed  Google Scholar 

  5. Ransohoff, R.M. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat. Neurosci. 15, 1074–1077 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stromnes, I.M., Cerretti, L.M., Liggitt, D., Harris, R.A. & Goverman, J.M. Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat. Med. 14, 337–342 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kroenke, M.A., Carlson, T.J., Andjelkovic, A.V. & Segal, B.M. IL-12– and IL-23–modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile and response to cytokine inhibition. J. Exp. Med. 205, 1535–1541 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    CAS  PubMed  Google Scholar 

  9. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17–producing T cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  10. Mangan, P.R. et al. Transforming growth factor–beta induces development of the T(H)17 lineage. Nature 441, 231–234 (2006).

    CAS  PubMed  Google Scholar 

  11. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    CAS  PubMed  Google Scholar 

  12. Hu, Y. et al. IL-17RC is required for IL-17A– and IL-17F–dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 184, 4307–4316 (2010).

    CAS  PubMed  Google Scholar 

  13. Li, X. et al. Act1, an NF-kappa B–activating protein. Proc. Natl. Acad. Sci. USA 97, 10489–10493 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Leonardi, A., Chariot, A., Claudio, E., Cunningham, K. & Siebenlist, U. CIKS, a connection to Ikappa B kinase and stress-activated protein kinase. Proc. Natl. Acad. Sci. USA 97, 10494–10499 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Qian, Y., Zhao, Z., Jiang, Z. & Li, X. Role of NF kappa B activator Act1 in CD40-mediated signaling in epithelial cells. Proc. Natl. Acad. Sci. USA 99, 9386–9391 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Qian, Y. et al. The adaptor Act1 is required for interleukin 17–dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8, 247–256 (2007).

    CAS  PubMed  Google Scholar 

  17. Kang, Z. et al. Astrocyte-restricted ablation of interleukin-17–induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 32, 414–425 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Raasch, J. et al. IkappaB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-kappaB in the central nervous system. Brain 134, 1184–1198 (2011).

    PubMed  PubMed Central  Google Scholar 

  19. van Loo, G. et al. Inhibition of transcription factor NF-κB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat. Immunol. 7, 954–961 (2006).

    CAS  PubMed  Google Scholar 

  20. Nishiyama, A., Komitova, M., Suzuki, R. & Zhu, X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat. Rev. Neurosci. 10, 9–22 (2009).

    CAS  PubMed  Google Scholar 

  21. Richardson, W.D., Young, K.M., Tripathi, R.B. & McKenzie, I. NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron 70, 661–673 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gold, R., Linington, C. & Lassmann, H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129, 1953–1971 (2006).

    PubMed  Google Scholar 

  23. Weaver, A. et al. An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization. FASEB J. 19, 1668–1670 (2005).

    CAS  PubMed  Google Scholar 

  24. Yan, Y. et al. CNS-specific therapy for ongoing EAE by silencing IL-17 pathway in astrocytes. Mol. Ther. 20, 1338–1348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Siffrin, V. et al. In vivo imaging of partially reversible Th17 cell–induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33, 424–436 (2010).

    CAS  PubMed  Google Scholar 

  26. Baumann, N. & Pham-Dinh, D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 81, 871–927 (2001).

    CAS  PubMed  Google Scholar 

  27. Fancy, S.P., Chan, J.R., Baranzini, S.E., Franklin, R.J. & Rowitch, D.H. Myelin regeneration: a recapitulation of development? Annu. Rev. Neurosci. 34, 21–43 (2011).

    CAS  PubMed  Google Scholar 

  28. Trotter, J., Karram, K. & Nishiyama, A. NG2 cells: Properties, progeny and origin. Brain Res. Rev. 63, 72–82 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Menn, B. et al. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 26, 7907–7918 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu, X., Bergles, D.E. & Nishiyama, A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135, 145–157 (2008).

    CAS  PubMed  Google Scholar 

  31. Emery, B. et al. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138, 172–185 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, Q., Wang, S. & Anderson, D.J. Identification of a novel family of oligodendrocyte lineage–specific basic helix-loop-helix transcription factors. Neuron 25, 331–343 (2000).

    CAS  PubMed  Google Scholar 

  33. Schüller, U. et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14, 123–134 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. Yu, W.P., Collarini, E.J., Pringle, N.P. & Richardson, W.D. Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12, 1353–1362 (1994).

    CAS  PubMed  Google Scholar 

  35. Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 33, 366–374 (2003).

    CAS  PubMed  Google Scholar 

  36. Dugas, J.C. et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65, 597–611 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaga, Y. et al. Mice with conditional inactivation of fibroblast growth factor receptor-2 signaling in oligodendrocytes have normal myelin, but display dramatic hyperactivity when combined with Cnp1 inactivation. J. Neurosci. 26, 12339–12350 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Paintlia, M.K., Paintlia, A.S., Singh, A.K. & Singh, I. Synergistic activity of interleukin-17 and tumor necrosis factor-alpha enhances oxidative stress-mediated oligodendrocyte apoptosis. J. Neurochem. 116, 508–521 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Furuta, S. et al. IL-25 causes apoptosis of IL-25R–expressing breast cancer cells without toxicity to nonmalignant cells. Sci. Transl. Med. 3, 78ra31 (2011).

    PubMed  PubMed Central  Google Scholar 

  40. Simon, C., Gotz, M. & Dimou, L. Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59, 869–881 (2011).

    PubMed  Google Scholar 

  41. Nishiyama, A., Chang, A. & Trapp, B.D. NG2+ glial cells: a novel glial cell population in the adult brain. J. Neuropathol. Exp. Neurol. 58, 1113–1124 (1999).

    CAS  PubMed  Google Scholar 

  42. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. Butts, B.D., Houde, C. & Mehmet, H. Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease. Cell Death Differ. 15, 1178–1186 (2008).

    CAS  PubMed  Google Scholar 

  45. Franklin, R.J. & Ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008).

    CAS  PubMed  Google Scholar 

  46. Lev, N., Barhum, Y., Melamed, E. & Offen, D. Bax-ablation attenuates experimental autoimmune encephalomyelitis in mice. Neurosci. Lett. 359, 139–142 (2004).

    CAS  PubMed  Google Scholar 

  47. Hisahara, S., Okano, H. & Miura, M. Caspase-mediated oligodendrocyte cell death in the pathogenesis of autoimmune demyelination. Neurosci. Res. 46, 387–397 (2003).

    CAS  PubMed  Google Scholar 

  48. Mc Guire, C., Beyaert, R. & van Loo, G. Death receptor signaling in central nervous system inflammation and demyelination. Trends Neurosci. 34, 619–628 (2011).

    CAS  PubMed  Google Scholar 

  49. Hara, H., Nanri, Y., Tabata, E., Mitsutake, S. & Tabira, T. Identification of astrocyte-derived immune suppressor factor that induces apoptosis of autoreactive T cells. J. Neuroimmunol. 233, 135–146 (2011).

    CAS  PubMed  Google Scholar 

  50. Patel, J. & Balabanov, R. Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis. Int. J. Mol. Sci. 13, 10647–10659 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Qian, Y. et al. Act1, a negative regulator in CD40- and BAFF-mediated B cell survival. Immunity 21, 575–587 (2004).

    CAS  PubMed  Google Scholar 

  52. Bajenaru, M.L. et al. Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol. Cell. Biol. 22, 5100–5113 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Frugier, T. et al. Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy. Hum. Mol. Genet. 9, 849–858 (2000).

    CAS  PubMed  Google Scholar 

  54. Pedraza, C.E., Monk, R., Lei, J., Hao, Q. & Macklin, W.B. Production, characterization and efficient transfection of highly pure oligodendrocyte precursor cultures from mouse embryonic neural progenitors. Glia 56, 1339–1352 (2008).

    PubMed  PubMed Central  Google Scholar 

  55. Chen, Y. et al. Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat. Protoc. 2, 1044–1051 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge W.B. Stallcup (Burnham Institute for Medical Research) for providing antibodies to NG2 and K.-A. Nave for providing Cnp1-cre transgenic mice (Max Planck Institute of Experimental Medicine). We also thank the Dana-Farber Cancer Institute for providing the Olig2-cre transgenic mice. This investigation was supported by grants from the US National Institutes of Health (R01NS071996 and P01HL103453).

Author information

Authors and Affiliations

Authors

Contributions

Z.K. designed and performed most of the experiments, interpreted the data, and wrote part of the manuscript. C.W. carried out most of the western blotting. J. Zepp did some western blotting and manuscript editing. L.W. performed some immunohistochemical staining. K.S. aided in western blotting, immunohistochemical staining and real-time PCR. J. Zhao performed statistical analysis. U.C. executed mouse breeding and cell culture. P.E.D. helped with experimental design. B.D.T. interpreted data. R.M.R. contributed to experimental design and manuscript writing. X.L. was integral for experimental design, manuscript writing, data interpretation and project coordination.

Corresponding author

Correspondence to Xiaoxia Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3759 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Z., Wang, C., Zepp, J. et al. Act1 mediates IL-17–induced EAE pathogenesis selectively in NG2+ glial cells. Nat Neurosci 16, 1401–1408 (2013). https://doi.org/10.1038/nn.3505

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3505

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing