Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Normal and abnormal coding of somatosensory stimuli causing pain

Abstract

Noxious stimuli usually cause pain and pain usually arises from noxious stimuli, but exceptions to these apparent truisms are the basis for clinically important problems and provide valuable insight into the neural code for pain. In this Review, we discuss how painful sensations arise. We argue that, although primary somatosensory afferents are tuned to specific stimulus features, natural stimuli often activate more than one type of afferent. Manipulating coactivation patterns can alter perception in ways that argue against each type of afferent acting independently (as expected for strictly labeled lines), suggesting instead that signals conveyed by different types of afferents interact. Deciphering the central circuits that mediate those interactions is critical for explaining the generation and modulation of neural signals that ultimately elicit pain. The advent of genetic and optical dissection techniques promise to dramatically accelerate progress toward this goal, which will facilitate the rational design of future pain therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transformation of neural representations.
Figure 2: Inferring central processing steps.
Figure 3: Diverse ways to produce burning pain.
Figure 4: Spinal microcircuitry underlying tactile allodynia associated with neuropathic pain.
Figure 5: Dissection of spinal microcircuits using intersectionally targeted probes and advanced optical methods.

Similar content being viewed by others

References

  1. Baxter, D.W. & Olszewski, J. Congenital universal insensitivity to pain. Brain 83, 381–393 (1960).

    Article  CAS  PubMed  Google Scholar 

  2. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).

    Article  Google Scholar 

  3. Churchland, P.S., Ramachandran, V.S. & Sejnowski, T.J. A critique of pure vision. in Large-Scale Neuronal Theories of the Brain (eds. Koch, C. & Davis, J.L.) 257–270 (MIT Press, 1994).

  4. Bushnell, M.C. & Apkarian, A.V. Representation of pain in the brain. in Wall and Melzack's Textbook of Pain (eds. McMahon, S.B. & Koltzenburg, M.) 107–124 (Elsevier, 2006).

  5. Bushnell, M.C., Ceko, M. & Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14, 502–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Melzack, R., Wall, P.D. & Ty, T.C. Acute pain in an emergency clinic: latency of onset and descriptor patterns related to different injuries. Pain 14, 33–43 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Colloca, L., Klinger, R., Flor, H. & Bingel, U. Placebo analgesia: psychological and neurobiological mechanisms. Pain 154, 511–514 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pouget, A., Beck, J.M., Ma, W.J. & Latham, P.E. Probabilistic brains: knowns and unknowns. Nat. Neurosci. 16, 1170–1178 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Knill, D.C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Friston, K. A theory of cortical responses. Phil. Trans. R. Soc. Lond. B 360, 815–836 (2005).

    Article  Google Scholar 

  11. Brown, H. & Friston, K.J. Free-energy and illusions: the Cornsweet effect. Front. Psychol. 3, 43 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. Costigan, M., Scholz, J. & Woolf, C.J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonica, J.J. History of pain concepts and therapies. in The Management of Pain (ed. Bonica, J.J.) 2–17 (Lea & Febiger, Philadelphia, 1990).

  14. Perl, E.R. Ideas about pain, a historical view. Nat. Rev. Neurosci. 8, 71–80 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Kumazawa, T., Mizunura, K. & Kruger, L. eds. The Polymodal Receptor: A Gateway to Pain (Elsevier, 1996).

  16. Ma, Q. Population coding of somatic sensations. Neurosci. Bull. 28, 91–99 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ma, Q. Labeled lines meet and talk: population coding of somatic sensations. J. Clin. Invest. 120, 3773–3778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prescott, S.A. & Ratté, S. Pain processing by spinal microcircuits: afferent combinatorics. Curr. Opin. Neurobiol. 22, 631–639 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Solomon, S.G. & Lennie, P. The machinery of colour vision. Nat. Rev. Neurosci. 8, 276–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Conway, B.R. Color vision, cones, and color-coding in the cortex. Neuroscientist 15, 274–290 (2009).

    Article  PubMed  Google Scholar 

  21. Sullivan, S.L., Ressler, K.J. & Buck, L.B. Odorant receptor diversity and patterned gene expression in the mammalian olfactory epithelium. Prog. Clin. Biol. Res. 390, 75–84 (1994).

    CAS  PubMed  Google Scholar 

  22. Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Malnic, B., Hirono, J., Sato, T. & Buck, L.B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Gottfried, J.A. Central mechanisms of odour object perception. Nat. Rev. Neurosci. 11, 628–641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Craig, A.D. & Bushnell, M.C. The thermal grill illusion: unmasking the burn of cold pain. Science 265, 252–255 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Craig, A.D. Can the basis for central neuropathic pain be identified by using a thermal grill? Pain 135, 215–216 (2008).

    Article  PubMed  Google Scholar 

  27. Craig, A.D. Mechanisms of thalamic pain. in Central Neuropathic Pain: Focus on Poststroke Pain (ed. Henry, J.L., Panju, A. & Yashpal, K.) 81–100 (IASP Press, Seattle, 2007).

  28. Maier, C. et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150, 439–450 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Hämäläinen, H., Vartiainen, M., Karvanen, L. & Jarvilehto, T. Paradoxical heat sensations during moderate cooling of the skin. Brain Res. 251, 77–81 (1982).

    Article  PubMed  Google Scholar 

  30. Yarnitsky, D. & Ochoa, J.L. Release of cold-induced burning pain by block of cold-specific afferent input. Brain 113, 893–902 (1990).

    Article  PubMed  Google Scholar 

  31. Mackenzie, R.A., Burke, D., Skuse, N.F. & Lethlean, A.K. Fibre function and perception during cutaneous nerve block. J. Neurol. Neurosurg. Psychiatry 38, 865–873 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Merrington, W.R. & Nathan, P.W. A study of post-ischaemic paraesthesiae. J. Neurol. Neurosurg. Psychiatry 12, 1–18 (1949).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nathan, P.W. Ischaemic and post-ischaemic numbness and paraesthesiae. J. Neurol. Neurosurg. Psychiatry 21, 12–23 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Isbister, G.K. & Kiernan, M.C. Neurotoxic marine poisoning. Lancet Neurol. 4, 219–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Vetter, I. et al. Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J. 31, 3795–3808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kobayashi, K. et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with aδ/c-fibers and colocalization with trk receptors. J. Comp. Neurol. 493, 596–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Campero, M., Baumann, T.K., Bostock, H. & Ochoa, J.L. Human cutaneous C fibres activated by cooling, heating and menthol. J. Physiol. (Lond.) 587, 5633–5652 (2009).

    Article  CAS  Google Scholar 

  38. Ochoa, J.L. & Yarnitsky, D. The triple cold syndrome: cold hyperalgesia, cold hypoaesthesia and cold skin in peripheral nerve disease. Brain 117, 185–197 (1994).

    Article  PubMed  Google Scholar 

  39. Defrin, R., Ohry, A., Blumen, N. & Urca, G. Sensory determinants of thermal pain. Brain 125, 501–510 (2002).

    Article  PubMed  Google Scholar 

  40. Sikand, P., Shimada, S.G., Green, B.G. & LaMotte, R.H. Similar itch and nociceptive sensations evoked by punctate cutaneous application of capsaicin, histamine and cowhage. Pain 144, 66–75 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bester, H., Chapman, V., Besson, J.M. & Bernard, J.F. Physiological properties of the lamina I spinoparabrachial neurons in the rat. J. Neurophysiol. 83, 2239–2259 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Keller, A.F., Beggs, S., Salter, M.W. & De Koninck, Y. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol. Pain 3, 27 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Miraucourt, L.S., Dallel, R. & Voisin, D.L. Glycine inhibitory dysfunction turns touch into pain through PKCγ interneurons. PLoS ONE 2, e1116 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ribeiro-da-Silva, A. & De Koninck, Y. Morphological and neurochemical organization of the spinal dorsal horn. in The Science of Pain (ed. Basbaum, A.I. & Bushnell, M.C.) 279–310 (Academic, 2008).

  45. Ferrini, F. & De Koninck, Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast. 2013, 429815 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cordero-Erausquin, M. et al. Dorsal horn neurons presynaptic to lamina I spinoparabrachial neurons revealed by transynaptic labeling. J. Comp. Neurol. 517, 601–615 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Baba, H. et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol. Cell. Neurosci. 24, 818–830 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Torsney, C. & MacDermott, A.B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J. Neurosci. 26, 1833–1843 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, Y. et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J. Clin. Invest. 123, 4050–4062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gagnon, M. et al. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat. Med. 19, 1524–1528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lavertu, G., Côté, S. & De Koninck, Y. Enhancing K-Cl co-transport restores normal spinothalamic sensory coding in a neuropathic pain model. Brain published online, doi:10.1093/brain/awt334 (24 December 2013).

  52. Ascoli, G.A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Gross, M.K., Dottori, M. & Goulding, M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34, 535–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Müller, T. et al. The homeodomain factor Lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 34, 551–562 (2002).

    Article  PubMed  Google Scholar 

  55. Helms, A.W. & Johnson, J.E. Specification of dorsal spinal cord interneurons. Curr. Opin. Neurobiol. 13, 42–49 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Xu, Y. et al. Ontogeny of excitatory spinal neurons processing distinct somatic sensory modalities. J. Neurosci. 33, 14738–14748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheng, L. et al. Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat. Neurosci. 7, 510–517 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Chen, Z.F. et al. The paired homeodomain protein DRG11 is required for the projection of cutaneous sensory afferent fibers to the dorsal spinal cord. Neuron 31, 59–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, X. et al. Excitatory superficial dorsal horn interneurons are functionally heterogeneous and required for the full behavioral expression of pain and itch. Neuron 78, 312–324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, M. et al. Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev. Biol. 322, 394–405 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Xu, Y. et al. Tlx1 and Tlx3 coordinate specification of dorsal horn pain-modulatory peptidergic neurons. J. Neurosci. 28, 4037–4046 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bröhl, D. et al. A transcriptional network coordinately determines transmitter and peptidergic fate in the dorsal spinal cord. Dev. Biol. 322, 381–393 (2008).

    Article  PubMed  CAS  Google Scholar 

  63. Guo, Z. et al. Tlx1/3 and Ptf1a control the expression of distinct sets of transmitter and peptide receptor genes in the developing dorsal spinal cord. J. Neurosci. 32, 8509–8520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Polgár, E. et al. Functional differences between neurochemically defined populations f inhibitory interneurons in the rat spinal dorsal horn. Pain 154, 2606–2615 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dymecki, S.M. & Kim, J.C. Molecular neuroanatomy's “Three Gs”: a primer. Neuron 54, 17–34 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saito, M. et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Buch, T. et al. A Cre inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, J.C. et al. Linking genetically defined neurons to behavior through a broadly applicable silencing allele. Neuron 63, 305–315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Armbruster, B.N., Li, X., Pausch, M.H., Herlitze, S. & Roth, B.L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ray, R.S. et al. Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333, 637–642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kramer, R.H., Mourot, A. & Adesnik, H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat. Neurosci. 16, 816–823 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tye, K.M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wickersham, I.R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mishra, S.K. & Hoon, M.A. The cells and circuitry for itch responses in mice. Science 340, 968–971 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun, Y.G. et al. Cellular basis of itch sensation. Science 325, 1531–1534 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Mantyh, P.W. et al. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278, 275–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Carstens, E.E., Carstens, M.I., Simons, C.T. & Jinks, S.L. Dorsal horn neurons expressing NK-1 receptors mediate scratching in rats. Neuroreport 21, 303–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. LeChasseur, Y. et al. A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat. Methods 8, 319–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Alivisatos, A.P. et al. Nanotools for neuroscience and brain activity mapping. ACS Nano 7, 1850–1866 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Packer, A.M., Roska, B. & Hausser, M. Targeting neurons and photons for optogenetics. Nat. Neurosci. 16, 805–815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dunfield, D. & Haas, K. In vivo single-cell excitability probing of neuronal ensembles in the intact and awake developing Xenopus brain. Nat. Protoc. 5, 841–848 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M. & Keller, P.J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Daou, I. et al. Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J. Neurosci. 33, 18631–18640 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kerr, J.N. & Nimmerjahn, A. Functional imaging in freely moving animals. Curr. Opin. Neurobiol. 22, 45–53 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Laffray, S. et al. Adaptive movement compensation for in vivo imaging of fast cellular dynamics within a moving tissue. PLoS ONE 6, e19928 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bélanger, E. et al. Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy. J. Biomed. Opt. 17, 021107 (2012).

    Article  PubMed  Google Scholar 

  88. Ghosh, K.K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ouakli, N., Guevara, E., Dubeau, S., Beaumont, E. & Lesage, F. Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats. Opt. Express 18, 10068–10077 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Labrakakis, C., Lorenzo, L.E., Bories, C., Ribeiro-da-Silva, A. & De Koninck, Y. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn. Mol. Pain 5, 24 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Takazawa, T. & MacDermott, A.B. Glycinergic and GABAergic tonic inhibition fine tune inhibitory control in regionally distinct subpopulations of dorsal horn neurons. J. Physiol. (Lond.) 588, 2571–2587 (2010).

    Article  CAS  Google Scholar 

  92. Zheng, J., Lu, Y. & Perl, E.R. Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents. J. Physiol. (Lond.) 588, 2065–2075 (2010).

    Article  CAS  Google Scholar 

  93. Mesnage, B. et al. Morphological and functional characterization of cholinergic interneurons in the dorsal horn of the mouse spinal cord. J. Comp. Neurol. 519, 3139–3158 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Hughes, D.I. et al. Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn. J. Physiol. (Lond.) 590, 3927–3951 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants R01 NS047710, P01 NS0272040 and R01 NS086372 to Q.M., NIH grants R01 NS076706 and R21 NS074146 and a New Investigator Award from the Canadian Institutes of Health Research (CIHR) to S.A.P., and CIHR grant MOP 12942 to Y.D.K. and the CIHR Neurophysics program. The idea of using intersectional genetic manipulations to dissect spinal pain circuits has been jointly developed by M. Goulding at the Salk Institute and by Q.M. We thank Sylvain Côté for expert assistance with artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A Prescott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prescott, S., Ma, Q. & De Koninck, Y. Normal and abnormal coding of somatosensory stimuli causing pain. Nat Neurosci 17, 183–191 (2014). https://doi.org/10.1038/nn.3629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing