Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spine neck plasticity regulates compartmentalization of synapses

Abstract

Dendritic spines have been proposed to transform synaptic signals through chemical and electrical compartmentalization. However, the quantitative contribution of spine morphology to synapse compartmentalization and its dynamic regulation are still poorly understood. We used time-lapse super-resolution stimulated emission depletion (STED) imaging in combination with fluorescence recovery after photobleaching (FRAP) measurements, two-photon glutamate uncaging, electrophysiology and simulations to investigate the dynamic link between nanoscale anatomy and compartmentalization in live spines of CA1 neurons in mouse brain slices. We report a diversity of spine morphologies that argues against common categorization schemes and establish a close link between compartmentalization and spine morphology, wherein spine neck width is the most critical morphological parameter. We demonstrate that spine necks are plastic structures that become wider and shorter after long-term potentiation. These morphological changes are predicted to lead to a substantial drop in spine head excitatory postsynaptic potential (EPSP) while preserving overall biochemical compartmentalization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spine morphologies span a broad continuum.
Figure 2: Spines are heterogeneous biochemical compartments.
Figure 3: Spine morphology determines compartmentalization.
Figure 4: Estimating electrical neck resistance.
Figure 5: Changes in diffusion and spine neck width co-vary.
Figure 6: Structural neck and head plasticity during LTP.
Figure 7: Influence of Rneck on electrical signaling.

Similar content being viewed by others

References

  1. Alvarez, V.A. & Sabatini, B.L. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97 (2007).

    CAS  PubMed  Google Scholar 

  2. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    CAS  PubMed  Google Scholar 

  3. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    CAS  PubMed  Google Scholar 

  5. Lang, C. et al. Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc. Natl. Acad. Sci. USA 101, 16665–16670 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nägerl, U.V., Eberhorn, N., Cambridge, S.B. & Bonhoeffer, T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44, 759–767 (2004).

    PubMed  Google Scholar 

  8. Oh, W.C., Hill, T.C. & Zito, K. Synapse-specific and size-dependent mechanisms of spine structural plasticity accompanying synaptic weakening. Proc. Natl. Acad. Sci. USA 110, E305–E312 (2013).

    CAS  PubMed  Google Scholar 

  9. Svoboda, K., Tank, D.W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996).

    CAS  PubMed  Google Scholar 

  10. Scheuss, V. & Bonhoeffer, T. Function of dendritic spines on hippocampal inhibitory neurons. Cereb. Cortex 10.1093/cercor/bht171 (3 July 2013).

  11. Majewska, A., Tashiro, A. & Yuste, R. Regulation of spine calcium dynamics by rapid spine motility. J. Neurosci. 20, 8262–8268 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Araya, R., Jiang, J., Eisenthal, K.B. & Yuste, R. The spine neck filters membrane potentials. Proc. Natl. Acad. Sci. USA 103, 17961–17966 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Koch, C. & Zador, A. The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413–422 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Palmer, L.M. & Stuart, G.J. Membrane potential changes in dendritic spines during action potentials and synaptic input. J. Neurosci. 29, 6897–6903 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang, H.T. Cortical neurons with particular reference to the apical dendrites. Cold Spring Harb. Symp. Quant. Biol. 17, 189–202 (1952).

    CAS  PubMed  Google Scholar 

  16. Crick, F. Do dendritic spines twitch? Trends Neurosci. 5, 44–46 (1982).

    Google Scholar 

  17. Fifková, E. & Anderson, C.L. Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp. Neurol. 74, 621–627 (1981).

    PubMed  Google Scholar 

  18. Noguchi, J., Matsuzaki, M., Ellis-Davies, G.C. & Kasai, H. Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46, 609–622 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanaka, J. et al. Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319, 1683–1687 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Urban, N.T., Willig, K.I., Hell, S.W. & Nägerl, U.V. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101, 1277–1284 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Oray, S., Majewska, A. & Sur, M. Effects of synaptic activity on dendritic spine motility of developing cortical layer v pyramidal neurons. Cereb. Cortex 16, 730–741 (2006).

    PubMed  Google Scholar 

  22. Parnass, Z., Tashiro, A. & Yuste, R. Analysis of spine morphological plasticity in developing hippocampal pyramidal neurons. Hippocampus 10, 561–568 (2000).

    CAS  PubMed  Google Scholar 

  23. Peebles, C.L. et al. Arc regulates spine morphology and maintains network stability in vivo. Proc. Natl. Acad. Sci. USA 107, 18173–18178 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Harris, K.M., Jensen, F.E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris, K.M. & Stevens, J.K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Heyman, N.S. & Burt, J.M. Hindered diffusion through an aqueous pore describes invariant dye selectivity of Cx43 junctions. Biophys. J. 94, 840–854 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumar, M., Mommer, M.S. & Sourjik, V. Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. Biophys. J. 98, 552–559 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322, 549–560 (1905).

    Google Scholar 

  29. Petrásek, Z. & Schwille, P. Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys. J. 94, 1437–1448 (2008).

    PubMed  Google Scholar 

  30. Alevra, M., Schwartz, P. & Schild, D. Direct measurement of diffusion in olfactory cilia using a modified FRAP approach. PLoS ONE 7, e39628 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Major, G., Larkman, A.U., Jonas, P., Sakmann, B. & Jack, J.J. Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J. Neurosci. 14, 4613–4638 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nevian, T., Larkum, M.E., Polsky, A. & Schiller, J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat. Neurosci. 10, 206–214 (2007).

    CAS  PubMed  Google Scholar 

  33. Grunditz, A., Holbro, N., Tian, L., Zuo, Y. & Oertner, T.G. Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization. J. Neurosci. 28, 13457–13466 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Harvey, C.D. & Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450, 1195–1200 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bittner, K.C., Andrasfalvy, B.K. & Magee, J.C. Ion channel gradients in the apical tuft region of CA1 pyramidal neurons. PLoS ONE 7, e46652 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong, R.K., Prince, D.A. & Basbaum, A.I. Intradendritic recordings from hippocampal neurons. Proc. Natl. Acad. Sci. USA 76, 986–990 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tønnesen, J. & Nägerl, U.V. Two-color STED imaging of synapses in living brain slices. Methods Mol. Biol. 950, 65–80 (2013).

    PubMed  Google Scholar 

  38. Trommald, M. & Hulleberg, G. Dimensions and density of dendritic spines from rat dentate granule cells based on reconstructions from serial electron micrographs. J. Comp. Neurol. 377, 15–28 (1997).

    CAS  PubMed  Google Scholar 

  39. Arellano, J.I., Benavides-Piccione, R., Defelipe, J. & Yuste, R. Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1, 131–143 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. Jones, E.G. & Powell, T.P. Morphological variations in the dendritic spines of the neocortex. J. Cell Sci. 5, 509–529 (1969).

    CAS  PubMed  Google Scholar 

  41. Peters, A. & Kaiserman-Abramof, I.R. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am. J. Anat. 127, 321–355 (1970).

    CAS  PubMed  Google Scholar 

  42. Spacek, J. & Hartmann, M. Three-dimensional analysis of dendritic spines. I. Quantitative observations related to dendritic spine and synaptic morphology in cerebral and cerebellar cortices. Anat. Embryol. (Berl.) 167, 289–310 (1983).

    CAS  Google Scholar 

  43. Stewart, M.G. et al. Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. Eur. J. Neurosci. 21, 3368–3378 (2005).

    CAS  PubMed  Google Scholar 

  44. Harnett, M.T., Makara, J.K., Spruston, N., Kath, W.L. & Magee, J.C. Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491, 599–602 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

    CAS  PubMed  Google Scholar 

  46. Fonseca, R., Nagerl, U.V., Morris, R.G. & Bonhoeffer, T. Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44, 1011–1020 (2004).

    CAS  PubMed  Google Scholar 

  47. Yuste, R. Electrical compartmentalization in dendritic spines. Annu. Rev. Neurosci. 36, 429–449 (2013).

    CAS  PubMed  Google Scholar 

  48. Wilson, C.J. Passive cable properties of dendritic spines and spiny neurons. J. Neurosci. 4, 281–297 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gulledge, A.T., Carnevale, N.T. & Stuart, G.J. Electrical advantages of dendritic spines. PLoS ONE 7, e36007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gähwiler, B.H. Slice cultures of cerebellar, hippocampal and hypothalamic tissue. Experientia 40, 235–243 (1984).

    PubMed  Google Scholar 

  51. Nägerl, U.V., Willig, K.I., Hein, B., Hell, S.W. & Bonhoeffer, T. Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. USA 105, 18982–18987 (2008).

    PubMed  PubMed Central  Google Scholar 

  52. Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    CAS  PubMed  Google Scholar 

  53. Klar, T.A., Jakobs, S., Dyba, M., Egner, A. & Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Urban, N.T., Willig, K.I., Hell, S.W. & Nagerl, U.V. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101, 1277–1284 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tønnesen, J., Nadrigny, F., Willig, K.I., Wedlich-Soldner, R. & Nägerl, U.V. Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys. J. 101, 2545–2552 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. Benke, T.A., Luthi, A., Isaac, J.T. & Collingridge, G.L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 (1998).

    CAS  PubMed  Google Scholar 

  57. Gasparini, S., Migliore, M. & Magee, J.C. On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J. Neurosci. 24, 11046–11056 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. DiGregorio (Pasteur Institute) and all members of the Nägerl laboratory for comments on the manuscript, and J. Angibaud for excellent technical support. This work was supported by postdoctoral fellowships from the Marie-Curie Program (grant 272351) and the European Molecular Biology Organization (EMBO; grant 1518-2010) to J.T. and by grants from the French Institute of Health and Medical Research (INSERM), Agence Nationale de la Recherche (ANR), the Human Frontiers Science program (HFSP) and France-BioImaging (ANR-10-INSB-04) to U.V.N.

Author information

Authors and Affiliations

Authors

Contributions

J.T. and U.V.N. conceived and designed experiments. J.T. performed experimental work. G.K. and B.R. developed and provided reagents. J.T. and U.V.N. analyzed data and performed modeling. J.T. and U.V.N. wrote the paper. J.T., G.K., B.R. and U.V.N. approved the paper.

Corresponding author

Correspondence to U Valentin Nägerl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Raw STED image of dendritic segment.

(a) The image z-stack depicted as a maximum intensity projection in Figure 1, covering 10 sections 460 nm apart. All sections shown are raw images. (b) The maximum intensity projection of the raw image sections. Scale bars are 500 nm.

Supplementary Figure 2 Correlation plot of diffusional recovery time constants for two different durations of bleaching.

Correlation plot of diffusional recovery time constants, τ, for two different durations of bleaching (short: 10 ms; long: 300 ms; R2 = 0.76; P < 0.0001; n = 14 spines [2 slices, 2 animals]; y = 1.0x + 4.7).

Supplementary Figure 3 Contributions of morphological parameters to τ variability.

(a) Residuals from the linear correlation between τ and neck length depicted in Figure 3d (R2 = 0.18; N = 148 spines [15 slices, 12 animals]). (b) τ plotted against neck cross-sectional area (A) (hyperbola fit y = ax-1+b; R2 = 0.45, depicted with the 95% CI). (c) Plot of 1/A against τ (Linear regression, R2 = 0.48, plot shows residuals). (d) Head volume plotted against τ (linear regression with 95% CI, R2 = 0.29). (e) Residuals plot from (d).

Supplementary Figure 4 Model illustrating the structural plasticity of the spine head and neck observed during uLTP.

Supplementary Figure 5 Observed morphological changes.

Observed morphological changes in (a) head volume, (b) neck width and (c) neck length during combined STED, FRAP and uLTP experiments (Fig. 6j,k). uLTP induced changes in all three morphological parameters (1-way ANOVA P = 0.03 to 0.005. P values in graphs are from Dunnett's multiple comparisons. Plots display mean ± SEM.

Supplementary Figure 6 Influence of morphological changes on EPSPs.

(a) The equivalent circuit model of a passive spine used to calculate spine and dendritic EPSPs. The model incorporates synaptic conductance (Gsyn), membrane reversal potential (Esyn), spine neck resistance (Rneck) and dendritic input resistance (Rdend). (b) Cartoon illustration of the effect of a 50% drop in Rneck as observed after LTP.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 747 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tønnesen, J., Katona, G., Rózsa, B. et al. Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17, 678–685 (2014). https://doi.org/10.1038/nn.3682

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3682

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing