Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Common circuit design in fly and mammalian motion vision

Subjects

Abstract

Motion-sensitive neurons have long been studied in both the mammalian retina and the insect optic lobe, yet striking similarities have become obvious only recently. Detailed studies at the circuit level revealed that, in both systems, (i) motion information is extracted from primary visual information in parallel ON and OFF pathways; (ii) in each pathway, the process of elementary motion detection involves the correlation of signals with different temporal dynamics; and (iii) primary motion information from both pathways converges at the next synapse, resulting in four groups of ON-OFF neurons, selective for the four cardinal directions. Given that the last common ancestor of insects and mammals lived about 550 million years ago, this general strategy seems to be a robust solution for how to compute the direction of visual motion with neural hardware.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of motion detection.
Figure 2: Motion detection in the mouse retina: direction-selective neurons and direction-specific circuits.
Figure 3: Motion detection in the mouse retina: generation of direction selectivity.
Figure 4: The fly motion vision system.
Figure 5: Fly and mouse motion detection circuits side by side.

Similar content being viewed by others

References

  1. Limb, J.O. & Murphy, J.A. Estimating the velocity of moving images in television signals. Comput. Graph. Image Process. 4, 311–327 (1975).

    Article  Google Scholar 

  2. Fennema, C.L. & Thompson, W.B. Velocity determination in scenes containing several moving objects. Comput. Graph. Image Process. 9, 301–315 (1979).

    Article  Google Scholar 

  3. Hildreth, E.C. & Koch, C. The analysis of motion: from computational theory to neural mechanisms. Annu. Rev. Neurosci. 10, 477–533 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Srinivasan, M.V. Generalized gradient schemes for measurement of image motion. Biol. Cybern. 63, 421–431 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Hassenstein, B. & Reichardt, W. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. B 11b, 513–524 (1956).

    Article  Google Scholar 

  6. Reichardt, W. Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. in Sensory Communication (ed. Rosenblith, W.A.) 303–317 (MIT Press/Wiley, 1961).

  7. Reichardt, W. Evaluation of optical information by movement detectors. J. Comp. Physiol. A 161, 533–547 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Borst, A. & Egelhaaf, M. Principles of visual motion detection. Trends Neurosci. 12, 297–306 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Egelhaaf, M., Borst, A. & Reichardt, W. Computational structure of a biological motion detection system as revealed by local detector analysis in the fly's nervous system. J. Opt. Soc. Am. A 6, 1070–1087 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Single, S. & Borst, A. Dendritic integration and its role in computing image velocity. Science 281, 1848–1850 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Haag, J., Denk, W. & Borst, A. Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. Proc. Natl. Acad. Sci. USA 101, 16333–16338 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Borst, A. Correlation versus gradient type motion detectors—the pros and cons. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 369–374 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barlow, H.B. & Levick, W.R. The mechanism of directionally selective units in the rabbit's retina. J. Physiol. (Lond.) 178, 477–504 (1965).

    Article  CAS  Google Scholar 

  14. Masland, R.H. The fundamental plan of the retina. Nat. Neurosci. 4, 877–886 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Carter-Dawson, L.D. & LaVail, M.M. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J. Comp. Neurol. 188, 245–262 (1979).

    Article  CAS  PubMed  Google Scholar 

  16. Szikra, T. et al. Rods in daylight act as relay cells for cone-driven horizontal cell-mediated surround inhibition. Nat. Neurosci. 17, 1728–1735 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Euler, T., Haverkamp, S., Schubert, T. & Baden, T. Retinal Bipolar cells: Elementary building blocks of vision. Nat. Rev. Neurosci. 15, 507–519 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Slaughter, M.M. & Miller, R.F. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211, 182–185 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. Masu, M. et al. Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80, 757–765 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Roska, B. & Werblin, F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583–587 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Borst, A. & Euler, T. Seeing things in motion: models, circuits, and mechanisms. Neuron 71, 974–994 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Oyster, C.W. & Barlow, H.B. Direction-selective units in rabbit retina: distribution of preferred directions. Science 155, 841–842 (1967).

    Article  CAS  PubMed  Google Scholar 

  24. Elstrott, J. et al. Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves. Neuron 58, 499–506 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun, W., Deng, Q., Levick, W.R. & He, S. ON direction-selective ganglion cells in the mouse retina. J. Physiol. (Lond.) 576, 197–202 (2006).

    Article  CAS  Google Scholar 

  26. Kim, I.J., Zhang, Y., Yamagata, M., Meister, M. & Sanes, J.R. Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Barlow, H.B. & Hill, R.M. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139, 412–414 (1963).

    Article  CAS  PubMed  Google Scholar 

  28. Wyatt, H.J. & Day, N.W. Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina. Science 191, 204–205 (1976).

    Article  CAS  PubMed  Google Scholar 

  29. Famiglietti, E.V. 'Starburst' amacrine cells and cholinergic neurons: mirror-symmetric on and off amacrine cells of rabbit retina. Brain Res. 261, 138–144 (1983).

    Article  PubMed  Google Scholar 

  30. Yoshida, K. et al. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771–780 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Euler, T., Detwiler, P.B. & Denk, W. Directionally selective calcium signals in the dendrites of starburst amacrine cells. Nature 418, 845–852 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Taylor, W.R. & Vaney, D.I. Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. J. Neurosci. 22, 7712–7720 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fried, S.I., Münch, T.A. & Werblin, F.S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Chadderton, P., Schaefer, A.T., Williams, S.R. & Margrie, T.W. Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons. Nat. Rev. Neurosci. 15, 71–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Wei, W., Hamby, A.M., Zhou, K. & Feller, M.B. Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469, 402–406 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Vaney, D.I., Sivyer, B. & Taylor, W.R. Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat. Rev. Neurosci. 13, 194–208 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Trenholm, S., Johnson, K., Li, X., Smith, R.G. & Awatramani, G.B. Parallel mechanisms encode direction in the retina. Neuron 71, 683–694 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Baden, T., Berens, P., Bethge, M. & Euler, T. Spikes in mammalian bipolar cells support temporal layering of the inner retina. Curr. Biol. 23, 48–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, J.S. et al. Space-time wiring specificity supports direction selectivity in the retina. Nature 509, 331–336 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strausfeld, N.J. Atlas of an Insect Brain (Springer, 1976).

  43. Fischbach, K.-F. & Dittrich, A.P.M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989).

    Article  Google Scholar 

  44. Pierantoni, R. A look into the cock-pit of the fly. Cell Tissue Res. 171, 101–122 (1976).

    Article  CAS  PubMed  Google Scholar 

  45. Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol. Cybern. 45, 143–156 (1982).

    Article  Google Scholar 

  46. Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol. Cybern. 46, 67–79 (1982).

    Article  Google Scholar 

  47. Hengstenberg, R. Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. A 149, 179–193 (1982).

    Article  Google Scholar 

  48. Hengstenberg, R., Hausen, K. & Hengstenberg, B. The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erytrocephala. J. Comp. Physiol. A 149, 163–177 (1982).

    Article  Google Scholar 

  49. Krapp, H.G. & Hengstenberg, R. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384, 463–466 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Riehle, A. & Franceschini, N. Motion detection in flies: parametric control over ON-OFF pathways. Exp. Brain Res. 54, 390–394 (1984).

    Article  CAS  PubMed  Google Scholar 

  51. Egelhaaf, M. & Borst, A. Transient and steady-state response properties of movement detectors. J. Opt. Soc. Am. A 6, 116–127 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Borst, A. & Egelhaaf, M. Direction selectivity of fly motion-sensitive neurons is computed in a two-stage process. Proc. Natl. Acad. Sci. USA 87, 9363–9367 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Haag, J., Vermeulen, A. & Borst, A. The intrinsic electrophysiological characteristics of fly lobula plate tangential cells. III. Visual response properties. J. Comput. Neurosci. 7, 213–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Braitenberg, V. Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3, 271–298 (1967).

    Article  CAS  PubMed  Google Scholar 

  55. Kirschfeld, K. Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967).

    Article  CAS  PubMed  Google Scholar 

  56. Hardie, R.C. & Raghu, P. Visual transduction in Drosophila. Nature 413, 186–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Heisenberg, M. & Buchner, E. The role of retinula cell types in visual behavior of Drosophila melanogaster. J. Comp. Physiol. A 117, 127–162 (1977).

    Article  Google Scholar 

  58. Yamaguchi, S., Wolf, R., Desplan, C. & Heisenberg, M. Motion vision is independent of color in Drosophila. Proc. Natl. Acad. Sci. USA 105, 4910–4915 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rister, J. & Desplan, C. The retinal mosaics of opsin expression in invertebrates and vertebrates. Dev. Neurobiol. 71, 1212–1226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hardie, R.C. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339, 704–706 (1989).

    Article  CAS  PubMed  Google Scholar 

  61. Laughlin, S.B., Howard, J. & Blakeslee, B. Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proc. R. Soc. Lond. B Biol. Sci. 231, 437–467 (1987).

    Article  CAS  PubMed  Google Scholar 

  62. Joesch, M., Schnell, B., Raghu, S.V., Reiff, D.F. & Borst, A. ON and OFF pathways in Drosophila motion vision. Nature 468, 300–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Eichner, H., Joesch, M., Schnell, B., Reiff, D.F. & Borst, A. Internal structure of the fly elementary motion detector. Neuron 70, 1155–1164 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Joesch, M., Weber, F., Eichner, H. & Borst, A. Functional specialization of parallel motion detection circuits in the fly. J. Neurosci. 33, 902–905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Takemura, S.Y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175–181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takemura, S.Y. et al. Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr. Biol. 21, 2077–2084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shinomiya, K. et al. Candidate neural substrates for off-edge motion detection in Drosophila. Curr. Biol. 24, 1062–1070 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meier, M. et al. Neural circuit components of the Drosophila OFF motion vision pathway. Curr. Biol. 24, 385–392 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Silies, M. et al. Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79, 111–127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Strother, J.A., Nern, A. & Reiser, M.B. Direct observation of ON and OFF pathways in the Drosophila visual system. Curr. Biol. 24, 976–983 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Behnia, R., Clark, D.A., Carter, A.G., Clandinin, T.R. & Desplan, C. Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 512, 427–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maisak, M.S. et al. A directional tuning map of Drosophila elementary motion detectors. Nature 500, 212–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Buchner, E., Buchner, S. & Bülthoff, I. Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. J. Comp. Physiol. A 155, 471–483 (1984).

    Article  Google Scholar 

  74. Scott, E.K., Raabe, T. & Luo, L. Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J. Comp. Neurol. 454, 470–481 (2002).

    Article  PubMed  Google Scholar 

  75. Joesch, M., Plett, J., Borst, A. & Reiff, D.F. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol. 18, 368–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Schnell, B. et al. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J. Neurophysiol. 103, 1646–1657 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Schnell, B., Raghu, S.V., Nern, A. & Borst, A. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198, 389–395 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bahl, A., Ammer, G., Schilling, T. & Borst, A. Object tracking in motion-blind flies. Nat. Neurosci. 16, 730–738 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Mauss, A.S., Meier, M., Serbe, E. & Borst, A. Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J. Neurosci. 34, 2254–2263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Buchner, E. Elementary movement detectors in an insect visual system. Biol. Cybern. 24, 85–101 (1976).

    Article  Google Scholar 

  81. Yonehara, K. et al. The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron 79, 1078–1085 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Beier, K.T. et al. Transsynaptic tracing with vesicular stomatitis virus reveals novel retinal circuitry. J. Neurosci. 33, 35–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Snowden, R.J., Treue, S., Erickson, R.G. & Anderson, R.A. The response of area MT and V1 neurons to transparent motion. J. Neurosci. 11, 2768–2785 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Amthor, F.R., Takahashi, E.S. & Oyster, C.W. Morphologies of rabbit retinal ganglion cells with concentric receptive fields. J. Comp. Neurol. 280, 72–96 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Amthor, F.R., Takahashi, E.S. & Oyster, C.W. Morphologies of rabbit retinal ganglion cells with complex receptive fields. J. Comp. Neurol. 280, 97–121 (1989).

    Article  CAS  PubMed  Google Scholar 

  86. Wyatt, H.J. & Daw, N.W. Directionally sensitive ganglion cells in the rabbit retina: specificity for stimulus direction, size, and speed. J. Neurophysiol. 38, 613–626 (1975).

    Article  CAS  PubMed  Google Scholar 

  87. Koch, C. & Poggio, T. Multiplying with synapses and neurons. in Single Neuron Computation (eds. McKenna, T., Davis, J. & Zornetzer, S.F.) 315–342 (Academic, 1992).

  88. Hatsopoulos, N., Gabbiani, F. & Laurent, G. Elementary computation of object approach by a widefield visual neuron. Science 270, 1000–1003 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Gabbiani, F., Krapp, H., Koch, C. & Laurent, G. Multiplicative computation in a visual neuron sensitive to looking. Nature 420, 320–324 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Hausselt, S.E., Euler, T., Detwiler, P.B. & Denk, W. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol. 5, e185 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Torre, V. & Poggio, T. A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. Lond. B Biol. Sci. 202, 409–416 (1978).

    Article  Google Scholar 

  92. Rivlin-Etzion, M., Wie, W. & Feller, M.B. Visual stimulation reverses the directional preference of direction-selective retinal ganglion cells. Neuron 76, 518–525 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vlasits, A.L. et al. Visual stimulation switches the polarity of excitatory input to starburst amacrine cells. Neuron 83, 1172–1184 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ramon y Cajal, S. & Sanchez, D. Contribucion al conocimiento de los centros nerviosos de los insectos (Imprenta de Hijos de Nicholas Moja, Madrid, 1915).

  95. Sanes, J.R. & Zipursky, S.L. Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Barlow, H.B., Hill, R.M. & Levick, W.R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.) 173, 377–407 (1964).

    Article  CAS  PubMed Central  Google Scholar 

  97. Borst, A. Fly visual course control: behaviour, algorithms and circuits. Nat. Rev. Neurosci. 15, 590–599 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Borst, A. In search of the holy grail of fly motion vision. Eur. J. Neurosci. 40, 3285–3293 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Briggman, J. Pujol-Marti, A. Mauss, J. Haag, A. Arenz and A. Leonhardt for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Borst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borst, A., Helmstaedter, M. Common circuit design in fly and mammalian motion vision. Nat Neurosci 18, 1067–1076 (2015). https://doi.org/10.1038/nn.4050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing