Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal correlates of perception in early visual cortex

Abstract

We used functional magnetic resonance imaging (fMRI) to measure activity in human early visual cortex (areas V1, V2 and V3) during a challenging contrast-detection task. Subjects attempted to detect the presence of slight contrast increments added to two kinds of background patterns. Behavioral responses were recorded so that the corresponding cortical activity could be grouped into the usual signal detection categories: hits, false alarms, misses and correct rejects. For both kinds of background patterns, the measured cortical activity was retinotopically specific. Hits and false alarms were associated with significantly more cortical activity than were correct rejects and misses. That false alarms evoked more activity than misses indicates that activity in early visual cortex corresponded to the subjects' percepts, rather than to the physically presented stimulus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An ideal-observer model of contrast detection.
Figure 2: Experimental stimuli:
Figure 3: Typical fMRI responses for individual subjects:
Figure 4: fMRI response amplitudes averaged across subjects.

Similar content being viewed by others

References

  1. Graham, N. Visual Pattern Analyzers (ed. Broadbent, D.) (Oxford Univ. Press, New York, 1989).

    Book  Google Scholar 

  2. Parker, A.J. & Newsome, W.T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    Article  CAS  Google Scholar 

  3. Carandini, M., Heeger, D.J. & Movshon, J.A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    Article  CAS  Google Scholar 

  4. Geisler, W.S. & Albrecht, D.G. Visual cortex neurons in monkeys and cats: detection, discrimination and identification. Vis. Neurosci. 14, 897–919 (1997).

    Article  CAS  Google Scholar 

  5. Dean, A.F. The variability of discharge of simple cells in the cat striate cortex. Exp. Brain Res. 44, 437–440 (1981).

    Article  CAS  Google Scholar 

  6. Softky, W.R. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350 (1993).

    Article  CAS  Google Scholar 

  7. Shadlen, M.N. & Newsome, W.T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  CAS  Google Scholar 

  8. Aguirre, G.K., Zarahn, E. & D'Esposito, M. The variability of human, BOLD hemodynamic responses. Neuroimage 8, 360–369 (1998).

    Article  CAS  Google Scholar 

  9. Ress, D., Backus, B.T. & Heeger, D.J. Activity in primary visual cortex predicts performance in a visual detection task. Nat. Neurosci. 3, 940–945 (2000).

    Article  CAS  Google Scholar 

  10. Ahumada, A.J. Jr. Perceptual classification images from Vernier acuity masked by noise. Perception 26, 18 (1996).

    Google Scholar 

  11. Solomon, J.A. Noise reveals visual mechanisms of detection and discrimination. J. Vision 2, 105–120 (2002).

    Article  Google Scholar 

  12. Pashler, H.E. The Psychology of Attention (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  13. Tootell, R.B. et al. The retinotopy of visual spatial attention. Neuron 21, 1409–1422 (1998).

    Article  CAS  Google Scholar 

  14. Gandhi, S.P., Heeger, D.J. & Boynton, G.M. Spatial attention affects brain activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 3314–3319 (1999).

    Article  CAS  Google Scholar 

  15. Brefczynski, J.A. & DeYoe, E.A. A physiological correlate of the 'spotlight' of visual attention. Nat. Neurosci. 2, 370–374 (1999).

    Article  CAS  Google Scholar 

  16. Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R. & Ungerleider, L.G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

    Article  CAS  Google Scholar 

  17. Chawla, D., Rees, G. & Friston, K.J. The physiological basis of attentional modulation in extrastriate visual areas. Nat. Neurosci. 2, 671–676 (1999).

    Article  CAS  Google Scholar 

  18. Campbell, F.W. & Kulikowski, J.J. An electrophysiological measure of the psychophysical contrast threshold. J. Physiol. 217, 54–55 (1971).

    Google Scholar 

  19. Hillyard, S.A., Squires, K.C., Bauer, J.W. & Lindsay, P.H. Evoked potential correlates of auditory signal detection. Science 172, 1357–1360 (1971).

    Article  CAS  Google Scholar 

  20. Squires, K.C., Squires, N.K. & Hillyard, S.A. Vertex evoked potentials in a rating-scale detection task: relation to signal probability. Behav. Biol. 13, 21–34 (1975).

    Article  CAS  Google Scholar 

  21. Vogel, E.K., Luck, S.J. & Shapiro, K.L. Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. J. Exp. Psychol. Hum. Percept. Perform. 24, 1656–1674 (1998).

    Article  CAS  Google Scholar 

  22. Hunter, M., Turner, A. & Fulham, W.R. Visual signal detection measured by event-related potentials. Brain Cogn. 46, 342–356 (2001).

    Article  CAS  Google Scholar 

  23. Shulman, G.L. et al. Areas involved in encoding and applying directional expectations to moving objects. J. Neurosci. 19, 9480–9496 (1999).

    Article  CAS  Google Scholar 

  24. Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P. & Shulman, G.L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297 (2000).

    Article  CAS  Google Scholar 

  25. Shulman, G.L., Ollinger, J.M., Linenweber, M., Petersen, S.E. & Corbetta, M. Multiple neural correlates of detection in the human brain. Proc. Natl. Acad. Sci. USA 98, 313–318 (2001).

    Article  CAS  Google Scholar 

  26. Clark, V.P., Fannon, S., Lai, S., Benson, R. & Bauer, L. Responses to rare visual target and distractor stimuli using event-related fMRI. J. Neurophysiol. 83, 3133–3139 (2000).

    Article  CAS  Google Scholar 

  27. Grill-Spector, K., Kushnir, T., Hendler, T. & Malach, R. The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci. 3, 837–843 (2000).

    Article  CAS  Google Scholar 

  28. Grill-Spector, K. et al. in Attention and Performance XX (eds. Kanwisher, N. & Duncan, J.) (Oxford Univ. Press, Oxford, in press).

  29. Newsome, W.T., Britten, K.H. & Movshon, J.A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  CAS  Google Scholar 

  30. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  31. Shadlen, M.N., Britten, K.H., Newsome, W.T. & Movshon, J.A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    Article  CAS  Google Scholar 

  32. Thompson, K.G. The detection of visual signals by macaque frontal eye field during masking. Nat. Neurosci. 2, 44–49 (1999).

    Article  Google Scholar 

  33. Thompson, K.G. Antecedents and correlates of visual detection and awareness in macaque prefrontal cortex. Vis. Res. 40, 1523–1538 (2000).

    Article  CAS  Google Scholar 

  34. Super, H., Spekreijse, H. & Lamme, V.A. Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat. Neurosci. 4, 304–310 (2001).

    Article  CAS  Google Scholar 

  35. Lamme, V.A., Super, H. & Spekreijse, H. Feedforward, horizontal and feedback processing in the visual cortex. Curr. Opin. Neurobiol. 8, 529–535 (1998).

    Article  CAS  Google Scholar 

  36. Schmolesky, M.T. et al. Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278 (1998).

    Article  CAS  Google Scholar 

  37. Liang, H., Ding, M., Nakamura, R. & Bressler, S.L. Causal influences in primate cerebral cortex during visual pattern discrimination. Neuroreport 11, 2875–2880 (2000).

    Article  CAS  Google Scholar 

  38. Hupe, J.M. et al. Feedback connections act on the early part of the responses in monkey visual cortex. J. Neurophysiol. 85, 134–145 (2001).

    Article  CAS  Google Scholar 

  39. Foxe, J.J. & Simpson, G.V. Flow of activation from V1 to frontal cortex in humans. A framework for defining 'early' visual processing. Exp. Brain Res. 142, 139–150 (2002).

    Article  Google Scholar 

  40. Leopold, D.A. & Logothetis, N.K. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 379, 549–553 (1996).

    Article  CAS  Google Scholar 

  41. Polonsky, A., Blake, R., Braun, J. & Heeger, D.J. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat. Neurosci. 3, 1153–1159 (2000).

    Article  CAS  Google Scholar 

  42. Blake, R. & Logothetis, N.K. Visual competition. Nat. Rev. Neurosci. 3, 13–21 (2002).

    Article  CAS  Google Scholar 

  43. Tong, F. & Engel, S.A. Interocular rivalry revealed in the human cortical blind-spot representation. Nature 411, 195–199 (2001).

    Article  CAS  Google Scholar 

  44. Nestares, O. & Heeger, D.J. Robust multi-resolution alignment of MRI brain volumes. Magn. Reson. Med. 43, 705–715 (2000).

    Article  CAS  Google Scholar 

  45. Glover, G.H. & Lai, S. Self-navigated spiral fMRI: interleaved versus single-shot. Magn. Reson. Med. 39, 361–368 (1998).

    Article  CAS  Google Scholar 

  46. Glover, G.H. Simple analytic spiral K-space algorithm. Magn. Reson. Med. 42, 412–415 (1999).

    Article  CAS  Google Scholar 

  47. Smith, A.M. et al. Investigation of low frequency drift in fMRI signal. Neuroimage 9, 526–533 (1999).

    Article  CAS  Google Scholar 

  48. Sereno, M.I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  Google Scholar 

  49. Engel, S.A., Glover, G.H. & Wandell, B.A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Nadell, P. Neri, A. Norcia, K. Shenoy, M. Silver and B. Wandell for comments. This research was supported by a National Eye Institute grant (R01-EY11794) and a grant from the Human Frontier Science Program (RG0070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ress.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ress, D., Heeger, D. Neuronal correlates of perception in early visual cortex. Nat Neurosci 6, 414–420 (2003). https://doi.org/10.1038/nn1024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing